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Background - CBERs

We are interested in studying classification problems and invariants.

The abstract setting to do so is the study of Borel equivalence relations. Throughout,
X is a standard Borel space, such as the interval [0, 1] or the Cantor space 2N.

Countable Borel equivalence relations

A countable Borel equivalence relation (CBER) is an equivalence relation E which:

is a Borel subset of X 2.

has countable classes.

CBERs are well-studied object. for a survey, see ”Countable Borel Equivalence
Relations” by Jackson-Kechris-Louveau.
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Background - Examples of CBERs

1 The identity relation on X =X is a countable Borel equivalence relation.

2 Eventual equality and tail equivalence on sequences (xi ) ∈ SN:

(xi ) E0 (yj)←→ ∃N,∀n ≥ N, xn = yn

(xi ) Et (yj)←→ ∃N,m,∀n ≥ N, xn = yn+m

3 Orbit equivalence relations of Borel actions of countable groups Γ ↷ X :

x E (Γ ↷ X ) y ←→ ∃γ ∈ Γ, γx = y .

Theorem [Feldman-Moore, ’77]

All countable Borel equivalence relations arise as orbit equivalence relations.
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Background - Reductions

Given a CBER, we are interested in its ”complexity” with respect to other CBERs.

Reductions

If (X ,E ), (Y ,F ) are two CBERs, a Borel function f : X → Y such that

x E y ←→ f (x) F f (y)

is called a reduction. We write E ≤ F .

=X < E0,Et ,E (Z ↷ X ) < E
(
F2 ↷ 2F

2

free

)
< E

(
SL3(Z) ↷ 2

SL3(Z)
free

)
smooth < hyperfinite < treeable < (non-treeable)
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Background - Structurability

We are interested in what kind of structures can be defined in ”uniform” ways on
countable Borel equivalence relations:

Graphings

A Borel graph G ⊂ X 2 whose connected components are exactly the E -classes is called
a graphing of E .

We often require the graphings to satisfy extra conditions.

Many of these conditions give measure of complexity: if E ≤ F and F can be given a
treeing, (in other words, is treeable), then E is also treeable.
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Collections of CBERs

SMOOTH
Natural line

HYPERFINITE
One or two ended trees

TREEABILITY
Arbitrary trees

≤ ≤



Motivation - Group

Throughout, Γ is a finitely generated group.

A group Γ is free iff it has a Cayley graph
which is a tree.

Theorem (Classical)

A f.g. group Γ is virtually free iff it has a l.f Cayley graph G which is a quasi-tree.

Quasi-tree ← graph quasi-isometric to a tree ∃f : G → T which

f roughly preserves distances,

f is roughly surjective.

There are M > 1,K > 0 s.t.

1
M dT (f (x), f (y))− K ≤ dG (x , y) ≤ MdT (f (x), f (y)) + K ,

dT (im(f ), z) ≤ K .

for all x , y ∈ V (G ) and z ∈ V (T ).
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Motivation - Dynamics

Γ free, Γ ↷ X free =⇒ E (Γ ↷ X ) treeable.

Γ virtually free, Γ ↷ X free =⇒ E (Γ ↷ X ) quasi-treeable, i.e there exists some
graphing whose connected components are quasi-trees.

Theorem (Follows from Jackson–Kechris–Louveau ’02)

Γ virtually free, Γ ↷ X free =⇒ E (Γ ↷ X ) treeable.

Question

If a CBER is quasi-treeable, must it be treeable?

No, for bad reasons.
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Motivation - Dynamics

Γ free, Γ ↷ X free =⇒ E (Γ ↷ X ) treeable.

Γ virtually free, Γ ↷ X free =⇒ E (Γ ↷ X ) quasi-treeable, i.e there exists some
graphing whose connected components are quasi-trees.

Theorem (Follows from Jackson–Kechris–Louveau ’02)

Γ virtually free, Γ ↷ X free =⇒ E (Γ ↷ X ) treeable.

Better Question

If a CBER is l.f. quasi-treeable, must it be treeable?



Results

Theorem (R. Chen, A. P., R. Tao, A. Tserunyan 2023+)

Let E ⊆ X 2 be a CBER, G ⊆ E be a locally finite graphing whose each component is
a quasi-tree.

(i) G is treeable.

(ii) If G is one-ended, then E is hyperfinite.

Theorem (R. Chen, A. P., R. Tao, A. Tserunyan 2023+)

Let E ⊆ X 2 be a CBER, G ⊆ E be a locally finite graphing whose each component is
a quasi-tree. If G has a global bound on degree, there is a reduction to a Borel tree
(Y , T ) which is a quasi-isometry (class-wise).
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Short remark on the logic

To work in Borel combinatorics, one can often restrict to thinking about a countable,
connected graph.

Working this way, one needs to be careful to avoid using certain methods, such as the
axiom of choice.

For the rest of the talk, T is a locally finite connected quasi-tree.
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Overview of the proof

Quasi-tree T

nice nice family of ”cuts”

nice median graph

Subtree of the median graph

ultrafilter construction

Borel magic



Cuts

Given a countable graph G , the set of cuts of G is

C(G ) := {C ⋐ E (G ) : G − C has 2 connected components}

C

The two components of G − C are called the sides of C .
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Cuts in Quasi-tree

Recall that T is a quasi-tree. Given R ∈ N, look cuts of bounded diameter:

CR(T ) = {C ∈ C(T ) : diam(C ) < R}

Since T is a locally finite quasi-tree, there is R such that CR(T ) satisfies:

1 For all x ∈ V (T ), there are only finitely many C ∈ CR(T ) such that
C ∩ B2R+1(x) ̸= 0.

2 For any end ξ of T , any finite K ⋐ T , there is a cut C ∈ CR(T ) such that K , ξ lie
in different sides of C .
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Pocset of sides

For the right R, as per the last slide, the collection

PR(T ) = {P ⊂ V (T ) : P is a side of some C ∈ CR(T )} ∪ {∅,V (T )}
is a pocset; a poset with a complement operation.

This pocset also has nice topological
properties as subset of 2V (T ), namely its non isolated point are ∅,V (T ).

Theorem [Isbel ’80 + Werner ’81]

There is a Stone-type duality between

{”nice”pocsets P} ∼= {median graphs O}

We now have a median graph OR(T ). The last step is to find a subtree and then we
are done. But what is a median graph?
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A median graph can always be represented as 1-skeleton of CAT(0) cube complexes.
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Perpendicular hyperplanes

perpendicular hyperplanes

Hyperplanes are perpendicular if all pair of sides intersect.
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Revisiting Isbel-Werner duality

CR(T ) Median graph OR(T )

Orientation of cuts Vertices

Orientation differing on a single cut edge

Cuts Hyperplanes

Crossing Cuts Perpendicular hyperplanes

Finite number of cuts in a finite window Hyperplanes contain finitely many edges

Ends are separated Finite-to-1 map T → OR(T )

Theorem (Follows from Kechris-Miller ’04)

There exists a countable coloring of hyperplanes such that if two hyperplanes are
perpendicular, they have different color.
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Colorings

We have a coloring now:



Building the tree: first color

We consider the first color:



Adding more colors

We add one more color:

But we don’t have a tree anymore!
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Cycle cutting

For every hyperplane, we keep only the minimal amount of edges which preserves
connectedness.



Cycle cutting

For every hyperplane, we keep only the minimal amount of edges which preserves
connectedness.



Iterative procedure

Then we go again!



Iterative procedure

Then we go again!



Iterative procedure

Then we go again!



Iterative procedure

Then we go again!



After 4 colors

Skipping 2 steps:
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After all is said and done

Theorem (R. Chen, A. P., R. Tao, A. Tserunyan 2023+)

If O is a median graph with a countable coloring of hyperplanes such that
perpendicular hyperplanes have different colors, there is a ”canonical” subtree T̂ ⊂ O.

Can be generalized to other ”tree-like” notions for graph:

Theorem (R. Chen, A. P., R. Tao, A. Tserunyan 2023+)

If a CBER E admits a locally finite graphing with components quasi-trees or of
bounded tree-width, then E is treeable.

Thank you!
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