Quasi-treeable equivalence relations

Antoine Poulin

McGill
joint with: Ronnie Chen (University of Michigan), Ran Tao (Carnegie Melon University), Anush Tserunyan (McGill University)

Background - CBERs

We are interested in studying classification problems and invariants.

Background - CBERs

We are interested in studying classification problems and invariants.
The abstract setting to do so is the study of Borel equivalence relations. Throughout, X is a standard Borel space, such as the interval $[0,1]$ or the Cantor space 2^{N}.

Background - CBERs

We are interested in studying classification problems and invariants.
The abstract setting to do so is the study of Borel equivalence relations. Throughout, X is a standard Borel space, such as the interval $[0,1]$ or the Cantor space 2^{N}.

Countable Borel equivalence relations

A countable Borel equivalence relation (CBER) is an equivalence relation E which:

- is a Borel subset of X^{2}.
- has countable classes.

Background - CBERs

We are interested in studying classification problems and invariants.
The abstract setting to do so is the study of Borel equivalence relations. Throughout, X is a standard Borel space, such as the interval $[0,1]$ or the Cantor space 2^{N}.

Countable Borel equivalence relations

A countable Borel equivalence relation (CBER) is an equivalence relation E which:

- is a Borel subset of X^{2}.
- has countable classes.

CBERs are well-studied object. for a survey, see "Countable Borel Equivalence Relations" by Jackson-Kechris-Louveau.

Background - Examples of CBERs

(1) The identity relation on $X=x$ is a countable Borel equivalence relation.

Background - Examples of CBERs

(1) The identity relation on $X=x$ is a countable Borel equivalence relation.
(2) Eventual equality and tail equivalence on sequences $\left(x_{i}\right) \in S^{\mathbf{N}}$:

$$
\begin{gathered}
\left(x_{i}\right) E_{0}\left(y_{j}\right) \longleftrightarrow \exists N, \forall n \geq N, x_{n}=y_{n} \\
\left(x_{i}\right) E_{t}\left(y_{j}\right) \longleftrightarrow \exists N, m, \forall n \geq N, x_{n}=y_{n+m}
\end{gathered}
$$

Background - Examples of CBERs

(1) The identity relation on $X=x$ is a countable Borel equivalence relation.
(2) Eventual equality and tail equivalence on sequences $\left(x_{i}\right) \in S^{\mathbf{N}}$:

$$
\begin{aligned}
\left(x_{i}\right) E_{0}\left(y_{j}\right) \longleftrightarrow \exists N, \forall n \geq N, x_{n} & =y_{n} \\
\left(x_{i}\right) E_{t}\left(y_{j}\right) \longleftrightarrow \exists N, m, \forall n & \geq N, x_{n}=y_{n+m}
\end{aligned}
$$

(3) Orbit equivalence relations of Borel actions of countable groups $\Gamma \curvearrowright X$:

$$
x E(\Gamma \curvearrowright X) y \longleftrightarrow \exists \gamma \in \Gamma, \gamma x=y
$$

Background - Examples of CBERs

(1) The identity relation on $X=x$ is a countable Borel equivalence relation.
(2) Eventual equality and tail equivalence on sequences $\left(x_{i}\right) \in S^{\mathbf{N}}$:

$$
\begin{aligned}
\left(x_{i}\right) E_{0}\left(y_{j}\right) \longleftrightarrow \exists N, \forall n \geq N, x_{n} & =y_{n} \\
\left(x_{i}\right) E_{t}\left(y_{j}\right) \longleftrightarrow \exists N, m, \forall n \geq N, x_{n} & =y_{n+m}
\end{aligned}
$$

(3) Orbit equivalence relations of Borel actions of countable groups $\Gamma \curvearrowright X$:

$$
x E(\Gamma \curvearrowright X) y \longleftrightarrow \exists \gamma \in \Gamma, \gamma x=y
$$

Theorem [Feldman-Moore, '77]

All countable Borel equivalence relations arise as orbit equivalence relations.

Background - Reductions

Given a CBER, we are interested in its "complexity" with respect to other CBERs.

Background - Reductions

Given a CBER, we are interested in its "complexity" with respect to other CBERs.

Reductions

If $(X, E),(Y, F)$ are two CBERs, a Borel function $f: X \rightarrow Y$ such that $x E y \longleftrightarrow f(x) F f(y)$
is called a reduction. We write $E \leq F$.

$$
=x<E_{0}, E_{t}, E(\mathbf{Z} \curvearrowright X)
$$

Background - Reductions

Given a CBER, we are interested in its "complexity" with respect to other CBERs.

Reductions

If $(X, E),(Y, F)$ are two CBERs, a Bore function $f: X \rightarrow Y$ such that

$$
x E y \longleftrightarrow f(x) F f(y)
$$

is called a reduction. We write $E \leq F$.

$$
=x<E_{0}, E_{t}, E(\mathbf{Z} \curvearrowright X)<E\left(F_{2} \curvearrowright 2_{\text {free }}^{F^{2}}\right)
$$

Background - Reductions

Given a CBER, we are interested in its "complexity" with respect to other CBERs.

Reductions

If $(X, E),(Y, F)$ are two CBERs, a Borel function $f: X \rightarrow Y$ such that

$$
x E y \longleftrightarrow f(x) F f(y)
$$

is called a reduction. We write $E \leq F$.

$$
=x<E_{0}, E_{t}, E(\mathbf{Z} \curvearrowright X)<E\left(F_{2} \curvearrowright 2_{\text {free }}^{F^{2}}\right)<E\left(S L_{3}(\mathbf{Z}) \curvearrowright 2_{\text {free }}^{S L_{3}(\mathbf{Z})}\right)
$$

Background - Reductions

Given a CBER, we are interested in its "complexity" with respect to other CBERs.

Reductions

If $(X, E),(Y, F)$ are two CBERs, a Borel function $f: X \rightarrow Y$ such that

$$
x E y \longleftrightarrow f(x) F f(y)
$$

is called a reduction. We write $E \leq F$.

$$
\begin{gathered}
=x<E_{0}, E_{t}, E(\mathbf{Z} \curvearrowright X)<E\left(F_{2} \curvearrowright 2_{\text {free }}^{F^{2}}\right)<E\left(S L_{3}(\mathbf{Z}) \curvearrowright 2_{\text {free }}^{S L_{3}(\mathbf{Z})}\right) \\
\text { smooth }<\text { hyperfinite }<\text { treeable }<\text { (non-treeable) }
\end{gathered}
$$

Background - Structurability

We are interested in what kind of structures can be defined in "uniform" ways on countable Borel equivalence relations:

Background - Structurability

We are interested in what kind of structures can be defined in "uniform" ways on countable Borel equivalence relations:

Graphings

A Borel graph $G \subset X^{2}$ whose connected components are exactly the E-classes is called a graphing of E.

Background - Structurability

We are interested in what kind of structures can be defined in "uniform" ways on countable Borel equivalence relations:

Graphings

A Borel graph $G \subset X^{2}$ whose connected components are exactly the E-classes is called a graphing of E.

We often require the graphings to satisfy extra conditions.

Background - Structurability

We are interested in what kind of structures can be defined in "uniform" ways on countable Borel equivalence relations:

Graphings

A Borel graph $G \subset X^{2}$ whose connected components are exactly the E-classes is called a graphing of E.

We often require the graphings to satisfy extra conditions.
Many of these conditions give measure of complexity: if $E \leq F$ and F can be given a treeing, (in other words, is treeable), then E is also treeable.

Collections of CBERs

Motivation - Group

Throughout, Γ is a finitely generated group.

Motivation - Group

Throughout, Γ is a finitely generated group. A group 「 is free iff it has a Cayley graph which is a tree.

Motivation - Group

Throughout, Γ is a finitely generated group. A group Γ is free iff it has a Cayley graph which is a tree.

Theorem (Classical)

A f.g. group Γ is virtually free iff it has a l.f Cayley graph G which is a quasi-tree.
Quasi-tree \leftarrow graph quasi-isometric to a tree $\exists f: G \rightarrow T$ which

- f roughly preserves distances,
- f is roughly surjective.

Motivation - Group

Throughout, Γ is a finitely generated group. A group Γ is free iff it has a Cayley graph which is a tree.

Theorem (Classical)

A f.g. group Γ is virtually free iff it has a I.f Cayley graph G which is a quasi-tree.
Quasi-tree \leftarrow graph quasi-isometric to a tree $\exists f: G \rightarrow T$ which

- f roughly preserves distances,
- f is roughly surjective.

There are $M>1, K>0$ s.t.

$$
\begin{gathered}
\frac{1}{M} d_{T}(f(x), f(y))-K \leq d_{G}(x, y) \leq M d_{T}(f(x), f(y))+K, \\
d_{T}(\operatorname{im}(f), z) \leq K .
\end{gathered}
$$

for all $x, y \in V(G)$ and $z \in V(T)$.

Motivation - Dynamics

Γ free, $\Gamma \curvearrowright X$ free $\Longrightarrow E(\Gamma \curvearrowright X)$ treeable.

Motivation - Dynamics

Γ free, $\Gamma \curvearrowright X$ free $\Longrightarrow E(\Gamma \curvearrowright X)$ treeable.
Γ virtually free, $\Gamma \curvearrowright X$ free $\Longrightarrow E(\Gamma \curvearrowright X)$ quasi-treeable, i.e there exists some graphing whose connected components are quasi-trees.

Motivation - Dynamics

Γ free, $\Gamma \curvearrowright X$ free $\Longrightarrow E(\Gamma \curvearrowright X)$ treeable.
Γ virtually free, $\Gamma \curvearrowright X$ free $\Longrightarrow E(\Gamma \curvearrowright X)$ quasi-treeable, i.e there exists some graphing whose connected components are quasi-trees.

Theorem (Follows from Jackson-Kechris-Louveau '02)
Γ virtually free, $\Gamma \curvearrowright X$ free $\Longrightarrow E(\Gamma \curvearrowright X)$ treeable.

Motivation - Dynamics

Γ free, $\Gamma \curvearrowright X$ free $\Longrightarrow E(\Gamma \curvearrowright X)$ treeable.
Γ virtually free, $\Gamma \curvearrowright X$ free $\Longrightarrow E(\Gamma \curvearrowright X)$ quasi-treeable, i.e there exists some graphing whose connected components are quasi-trees.

Theorem (Follows from Jackson-Kechris-Louveau '02)
Γ virtually free, $\Gamma \curvearrowright X$ free $\Longrightarrow E(\Gamma \curvearrowright X)$ treeable.

Question

If a CBER is quasi-treeable, must it be treeable?

Motivation - Dynamics

Γ free, $\Gamma \curvearrowright X$ free $\Longrightarrow E(\Gamma \curvearrowright X)$ treeable.
Γ virtually free, $\Gamma \curvearrowright X$ free $\Longrightarrow E(\Gamma \curvearrowright X)$ quasi-treeable, i.e there exists some graphing whose connected components are quasi-trees.

Theorem (Follows from Jackson-Kechris-Louveau '02)
Γ virtually free, $\Gamma \curvearrowright X$ free $\Longrightarrow E(\Gamma \curvearrowright X)$ treeable.

Question

If a CBER is quasi-treeable, must it be treeable?
No, for bad reasons.

Motivation - Dynamics

Γ free, $\Gamma \curvearrowright X$ free $\Longrightarrow E(\Gamma \curvearrowright X)$ treeable.
Γ virtually free, $\Gamma \curvearrowright X$ free $\Longrightarrow E(\Gamma \curvearrowright X)$ quasi-treeable, i.e there exists some graphing whose connected components are quasi-trees.

Theorem (Follows from Jackson-Kechris-Louveau '02)
Γ virtually free, $\Gamma \curvearrowright X$ free $\Longrightarrow E(\Gamma \curvearrowright X)$ treeable.

Question

If a CBER is quasi-treeable, must it be treeable?
No, for bad reasons.

Motivation - Dynamics

Γ free, $\Gamma \curvearrowright X$ free $\Longrightarrow E(\Gamma \curvearrowright X)$ treeable.
Γ virtually free, $\Gamma \curvearrowright X$ free $\Longrightarrow E(\Gamma \curvearrowright X)$ quasi-treeable, i.e there exists some graphing whose connected components are quasi-trees.

Theorem (Follows from Jackson-Kechris-Louveau '02)
Γ virtually free, $\Gamma \curvearrowright X$ free $\Longrightarrow E(\Gamma \curvearrowright X)$ treeable.

Better Question

If a CBER is I.f. quasi-treeable, must it be treeable?

Results

Theorem (R. Chen, A. P., R. Tao, A. Tserunyan 2023+)
Let $E \subseteq X^{2}$ be a $C B E R, G \subseteq E$ be a locally finite graphing whose each component is a quasi-tree.
(i) G is treeable.
(ii) If G is one-ended, then E is hyperfinite.

Results

Theorem (R. Chen, A. P., R. Tao, A. Tserunyan 2023+)

Let $E \subseteq X^{2}$ be a CBER, $G \subseteq E$ be a locally finite graphing whose each component is a quasi-tree.
(i) G is treeable.
(ii) If G is one-ended, then E is hyperfinite.

Theorem (R. Chen, A. P., R. Tao, A. Tserunyan 2023+)

Let $E \subseteq X^{2}$ be a $C B E R, G \subseteq E$ be a locally finite graphing whose each component is a quasi-tree. If G has a global bound on degree, there is a reduction to a Borel tree (Y, \mathcal{T}) which is a quasi-isometry (class-wise).

To work in Borel combinatorics, one can often restrict to thinking about a countable, connected graph.

To work in Borel combinatorics, one can often restrict to thinking about a countable, connected graph.

Working this way, one needs to be careful to avoid using certain methods, such as the axiom of choice.

To work in Borel combinatorics, one can often restrict to thinking about a countable, connected graph.

Working this way, one needs to be careful to avoid using certain methods, such as the axiom of choice.

For the rest of the talk, T is a locally finite connected quasi-tree.

Cuts

Given a countable graph G, the set of cuts of G is

$$
\mathcal{C}(G):=\{C \Subset E(G): G-C \text { has } 2 \text { connected components }\}
$$

Cuts

Given a countable graph G, the set of cuts of G is

$$
\mathcal{C}(G):=\{C \Subset E(G): G-C \text { has } 2 \text { connected components }\}
$$

Cuts

Given a countable graph G, the set of cuts of G is

$$
\mathcal{C}(G):=\{C \Subset E(G): G-C \text { has } 2 \text { connected components }\}
$$

The two components of $G-C$ are called the sides of C.

Cuts in Quasi-tree

Recall that T is a quasi-tree. Given $R \in \mathbf{N}$, look cuts of bounded diameter:

$$
\mathcal{C}_{R}(T)=\{C \in \mathcal{C}(T): \operatorname{diam}(C)<R\}
$$

Cuts in Quasi-tree

Recall that T is a quasi-tree. Given $R \in \mathbf{N}$, look cuts of bounded diameter:

$$
\mathcal{C}_{R}(T)=\{C \in \mathcal{C}(T): \operatorname{diam}(C)<R\}
$$

Since T is a locally finite quasi-tree, there is R such that $\mathcal{C}_{R}(T)$ satisfies:
(1) For all $x \in V(T)$, there are only finitely many $C \in \mathcal{C}_{R}(T)$ such that $C \cap B_{2 R+1}(x) \neq 0$.
(2) For any end ξ of T, any finite $K \Subset T$, there is a cut $C \in \mathcal{C}_{R}(T)$ such that K, ξ lie in different sides of C.

Cuts in Quasi-tree

Recall that T is a quasi-tree. Given $R \in \mathbf{N}$, look cuts of bounded diameter:

$$
\mathcal{C}_{R}(T)=\{C \in \mathcal{C}(T): \operatorname{diam}(C)<R\}
$$

Since T is a locally finite quasi-tree, there is R such that $\mathcal{C}_{R}(T)$ satisfies:
(1) For all $x \in V(T)$, there are only finitely many $C \in \mathcal{C}_{R}(T)$ such that $C \cap B_{2 R+1}(x) \neq 0$.
(2) For any end ξ of T, any finite $K \Subset T$, there is a cut $C \in \mathcal{C}_{R}(T)$ such that K, ξ lie in different sides of C.

Pocset of sides

For the right R, as per the last slide, the collection

$$
\mathcal{P}_{R}(T)=\left\{P \subset V(T): P \text { is a side of some } C \in \mathcal{C}_{R}(T)\right\} \cup\{\varnothing, V(T)\}
$$

is a pocset; a poset with a complement operation.

Pocset of sides

For the right R, as per the last slide, the collection

$$
\mathcal{P}_{R}(T)=\left\{P \subset V(T): P \text { is a side of some } C \in \mathcal{C}_{R}(T)\right\} \cup\{\varnothing, V(T)\}
$$

is a pocset; a poset with a complement operation. This pocset also has nice topological properties as subset of $2^{V(T)}$, namely its non isolated point are $\varnothing, V(T)$.

Pocset of sides

For the right R, as per the last slide, the collection

$$
\mathcal{P}_{R}(T)=\left\{P \subset V(T): P \text { is a side of some } C \in \mathcal{C}_{R}(T)\right\} \cup\{\varnothing, V(T)\}
$$

is a pocset; a poset with a complement operation. This pocset also has nice topological properties as subset of $2^{V(T)}$, namely its non isolated point are $\varnothing, V(T)$.

Theorem [lsbel '80 + Werner '81]

There is a Stone-type duality between

$$
\{\text { "nice" pocsets } \mathcal{P}\} \cong\{\text { median graphs } \mathcal{O}\}
$$

Pocset of sides

For the right R, as per the last slide, the collection

$$
\mathcal{P}_{R}(T)=\left\{P \subset V(T): P \text { is a side of some } C \in \mathcal{C}_{R}(T)\right\} \cup\{\varnothing, V(T)\}
$$

is a pocset; a poset with a complement operation. This pocset also has nice topological properties as subset of $2^{V(T)}$, namely its non isolated point are $\varnothing, V(T)$.

Theorem [Isbel '80 + Werner '81]

There is a Stone-type duality between

$$
\{" \text { nice" pocsets } \mathcal{P}\} \cong\{\text { median graphs } \mathcal{O}\}
$$

We now have a median graph $\mathcal{O}_{R}(T)$. The last step is to find a subtree and then we are done. But what is a median graph?

Median graphs

A median graph can always be represented as 1 -skeleton of CAT(0) cube complexes.

Median graphs

A median graph can always be represented as 1 -skeleton of CAT(0) cube complexes.

Median graphs

A median graph can always be represented as 1 -skeleton of CAT(0) cube complexes.

Perpendicular hyperplanes

Perpendicular hyperplanes

Hyperplanes are perpendicular if all pair of sides intersect.

Revisiting Isbel-Werner duality

$\mathcal{C}_{R}(T)$
Median graph $\mathcal{O}_{R}(T)$

Revisiting Isbel-Werner duality

$\mathcal{C}_{R}(T)$	Median graph $\mathcal{O}_{R}(T)$
Orientation of cuts	Vertices
Orientation differing on a single cut	edge

Revisiting Isbel-Werner duality

$\mathcal{C}_{R}(T)$	Median graph $\mathcal{O}_{R}(T)$
Orientation of cuts	Vertices
Orientation differing on a single cut	edge
Cuts	Hyperplanes

Revisiting Isbel-Werner duality

$\mathcal{C}_{R}(T)$	Median graph $\mathcal{O}_{R}(T)$
Orientation of cuts	Vertices
Orientation differing on a single cut	edge
Cuts	Hyperplanes
Crossing Cuts	Perpendicular hyperplanes

Revisiting Isbel-Werner duality

$\mathcal{C}_{R}(T)$	Median graph $\mathcal{O}_{R}(T)$
Orientation of cuts	Vertices
Orientation differing on a single cut	edge
Cuts	Hyperplanes
Crossing Cuts	Perpendicular hyperplanes
Finite number of cuts in a finite window	Hyperplanes contain finitely many edges
Ends are separated	Finite-to-1 map $T \rightarrow \mathcal{O}_{R}(T)$

Revisiting Isbel-Werner duality

$\mathcal{C}_{R}(T)$	Median graph $\mathcal{O}_{R}(T)$
Orientation of cuts	Vertices
Orientation differing on a single cut	edge

Cuts	Hyperplanes
Crossing Cuts	Perpendicular hyperplanes

Finite number of cuts in a finite window	Hyperplanes contain finitely many edges
Ends are separated	Finite-to- $1 \operatorname{map} T \rightarrow \mathcal{O}_{R}(T)$

Theorem (Follows from Kechris-Miller '04)

There exists a countable coloring of hyperplanes such that if two hyperplanes are perpendicular, they have different color.

Colorings

We have a coloring now:

Building the tree: first color

We consider the first color:

Adding more colors

We add one more color:

Adding more colors

We add one more color:

Adding more colors

We add one more color:

Cycle cutting

For every hyperplane, we keep only the minimal amount of edges which preserves connectedness.

Cycle cutting

For every hyperplane, we keep only the minimal amount of edges which preserves connectedness.

Iterative procedure

Then we go again!

Iterative procedure

Then we go again!

Iterative procedure

Then we go again!

Iterative procedure

Then we go again!

After 4 colors
Skipping 2 steps

After 4 colors
Skipping 2 steps:
(1)

After 4 colors

Skipping 2 steps:

After all is said and done

Theorem (R. Chen, A. P., R. Tao, A. Tserunyan 2023+)
If \mathcal{O} is a median graph with a countable coloring of hyperplanes such that perpendicular hyperplanes have different colors, there is a "canonical" subtree $\widehat{T} \subset \mathcal{O}$.

After all is said and done

Theorem (R. Chen, A. P., R. Tao, A. Tserunyan 2023+)

If \mathcal{O} is a median graph with a countable coloring of hyperplanes such that perpendicular hyperplanes have different colors, there is a "canonical" subtree $\widehat{T} \subset \mathcal{O}$.

Can be generalized to other "tree-like" notions for graph:

Theorem (R. Chen, A. P., R. Tao, A. Tserunyan 2023+)

If a CBER E admits a locally finite graphing with components quasi-trees or of bounded tree-width, then E is treeable.

After all is said and done

Theorem (R. Chen, A. P., R. Tao, A. Tserunyan 2023+)

If \mathcal{O} is a median graph with a countable coloring of hyperplanes such that perpendicular hyperplanes have different colors, there is a "canonical" subtree $\widehat{T} \subset \mathcal{O}$.

Can be generalized to other "tree-like" notions for graph:

Theorem (R. Chen, A. P., R. Tao, A. Tserunyan 2023+)

If a CBER E admits a locally finite graphing with components quasi-trees or of bounded tree-width, then E is treeable.

Thank you!

