Probabilistic Properties of p-adic Polynomials

Antoine Poulin (Université Laval)

October 5th 2019

Separability over fields and rings

- Let K be a field and R a ring.
- A polynomial $f \in K[x]$ is separable if all its roots are distinct in an algebraic closure of K.
- This is equivalent to stating that f and its derivative have no common factor, i.e $\left(f, f^{\prime}\right)=K[x]$.
- Over a ring, a polynomial $f \in R[x]$ is separable if $R[x] /(f)$ is a separable R-algebra.
- For monic polynomials, this is also equivalent to $\left(f, f^{\prime}\right)=R[x]$.
- Two monic polynomials $f, g \in R[X]$ will be coprime if there is no polynomial of positive degree which divides both f and g.

The idea

- Using the inverse limit construction of \mathbb{Z}_{p}, link (f, g) with $\left(\bar{f}_{k}, \bar{g}_{k}\right)$, where \bar{f}_{k} is the canonical projection from $\mathbb{Z}_{p}[x]$ to $\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)[x]$.

Theorem (Polak, 2018)

The proportion of monic polynomials of degree $d \geq 2$ that are separable in $\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)[x]$ is $1-p^{-1}$.

Theorem (Hagedorn, Hatley, 2010)

The probability that two randomly chosen monic polynomials of degrees m and 2 in $\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)[x]$ are relatively prime is given by

$$
P_{\mathbb{Z} / p^{k} \mathbb{Z}}(m, 2)=1-\frac{f_{k}(p)}{p^{3 k}},
$$

where $f_{k}(x) \in \frac{1}{2} \mathbb{Z}[x]$ is an explicit monic polynomial of degree $2 k$.

Our result

Theorem (Lei, P., 2018)

Let $f, g \in \mathbb{Z}_{p}[x]$ be two monic polynomials of degree at least 1 . Then the $\mathbb{Z}_{p}[x]$-ideal generated by f and g equals $\mathbb{Z}_{p}[x]$ if and only if the $(\mathbb{Z} / p \mathbb{Z})[x]$-ideal generated by \bar{f}_{k} and \bar{g}_{k} equals $\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)[x]$.

- One side of implication is easy through projection.
- Lift a linear combination from $\mathbb{Z} / p^{k} \mathbb{Z}$ to $\mathbb{Z} / p^{2 k} \mathbb{Z}$ and inductively create a sequence of linear coefficients.
- Use compacity to find a limit in \mathbb{Z}_{p}.

Discussion

Corollary (From Polak's result)

The proportion of monic polynomials of degree $d \geq 2$ that are separable in $\mathbb{Z}_{p}[x]$ is $1-p^{-1}$.

- This gives an alternative proof of a result of Weiss (2014).

Corollary (From Hagedorn and Hatley's result)

The probability that two randomly chosen monic polynomials of degrees m and 2 in $\mathbb{Z}_{p}[x]$ are relatively prime is 1 .

The proof

- Given monic polynomials $f, g \in\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)[x]$ and arbitrary monic lifts $f^{*}, g^{*} \in \mathbb{Z}_{p}[x]$ such that there exists
$\alpha_{0}, \beta_{0} \in\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)[x]$ such that

$$
\alpha_{0} f+\beta_{0} g=1
$$

We wish to lift α_{0}, β_{0} to $\alpha_{\infty}, \beta_{\infty} \in \mathbb{Z}_{p}[x]$ such that

$$
\alpha_{\infty} f^{*}+\beta_{\infty} g^{*}=1
$$

- By looking at two arbitrary lifts $\alpha_{0}^{*}, \beta_{0}^{*} \in \mathbb{Z}_{p}[x]$, we find

$$
\alpha_{0}^{*} f^{*}+\beta_{0}^{*} g^{*}=1+Q,
$$

where $Q \in p^{k} \mathbb{Z}_{p}[x]$.

The proof

- Multiplying both sides by $1-Q$, the equation becomes

$$
\left.\left.\left(\alpha_{0}^{*}(1-Q)\right)\right) f^{*}+\left(\beta_{0}^{*}(1-Q)\right)\right) g^{*}=1-Q^{2},
$$

with $Q^{2} \in p^{2 k} \mathbb{Z}_{p}[x]$.

- We can then project the equation on $\mathbb{Z} / p^{2 k} \mathbb{Z}$,
- We can then define in $\mathbb{Z} / p^{2 k} \mathbb{Z}$

$$
\begin{aligned}
& \alpha_{1}:={\overline{\alpha_{0}^{*}}(1-Q)}_{2 k} ; \\
& \beta_{1}:={\overline{\beta_{0}^{*}(1-Q)}}_{2 k} .
\end{aligned}
$$

The proof

- Using euclidean division, we can assume that $\operatorname{deg}\left(\alpha_{1}\right)<\operatorname{deg}(g), \operatorname{deg}\left(\beta_{1}\right)<\operatorname{deg}(f)$.
- Inductively, we create the sequence $\left(\alpha_{i}, \beta_{i}\right)_{i \in \mathbb{N}}$. By looking at this sequence as one in $\mathbb{Z}_{p}^{\operatorname{deg}(f)+\operatorname{deg}(g)}$, we can guarantee, by compacity, that there is a subsequence with a limit $\left(\alpha_{\infty}, \beta_{\infty}\right)$.
- It can then be verified with projections that this gives the required result, that is

$$
\alpha_{\infty} f^{*}+\beta_{\infty} g^{*}=1
$$

Bibliography

婁 Hagedorn, T. R., Hatley, J. (2010). The probability of relatively prime polynomials in $\mathbb{Z}_{p^{k}}[x]$. Involve. 3(2) : 223-232.
Polak, J. K. C. (2018). Counting separable polynomials in $\mathbb{Z} / n[x]$. Canad. Math. Bull. 61(2) : 346-352.
嗇 Weiss, B. L. (2013). Probabilistic Galois theory over p-adic fields. J. Number Theory. 133(5) : 1537-1563.

Thank you!

