Measure equivalence of Baumslag-Solitar groups & type III relations

Antoine Poulin, McGill University

Joint w/ Damien Gaboriau, Robin Tucker-Drob, Anush Tserunyan & Konrad Wróbel

November 2024

Definition Properties

Definition (Baumslag-Solitar groups)

Let $p, q \in \mathbf{Z} - \{0\}$. The **Baumslag-Solitar group** with parameters (p, q) is:

$$\mathsf{BS}(p,q) = \langle a,t \mid ta^p t^{-1} = a^q \rangle$$

Introduced in '62 by G. Baumslag et D. Solitar. First example of a 2-gen. 1-rel. non-Hopfian group.

[These groups] destroys several conjectures long and strongly held by [me] and others, and some published and unpublished "theorems". –B.H. Neumann

- BS(*p*, *q*) isom BS(*q*, *p*)
- BS(*p*, *q*) isom BS(−*p*, −*q*)
- Moldavanskii '91: These are all the isomorphisms.
- BS(p,q) comm BS(-p,q), i.e they have isomorphic finite index subgroup.

Restrict to the case $1 \le p \le q$.

Definition Properties

Three families of Baumslag-Solitar groups:

- BS(1, p) is solvable, amenable.
- BS(p, p) contains finite index $\mathbf{F} \times \mathbf{Z}$, where \mathbf{F} is f.g free group.
- If 1 . More heterogenous class.

Definition Properties Measure equivalence of BS(p,q)

Let Γ, Δ be countable groups.

Definition (Measure equivalence)

 Γ and Δ are **measure equivalent**, denoted $\Gamma ME \Delta$, if there exists actions $\Gamma, \Delta \curvearrowright (\Omega, \mu)$ on a standard measure space (e.g **N**, **R**, 2^{**N**}... with Borel measures) such that:

- Actions are pmp, free and commute.
- Both actions admit (standard) fundamental domains of finite measure:

 $\mu\left(\Gamma\backslash\Omega\right),\mu\left(\Delta\backslash\Omega
ight)<\infty$

Introduced by Gromov in '93 as measured analogue of quasi-isometry. Examples:

- If $\Gamma < \Delta$ finite index subgroup, then $\Gamma ME \Delta$.
- If $\Gamma \operatorname{comm} \Delta$, then $\Gamma \operatorname{ME} \Delta$.
- If Γ, Δ are both lattices in the same lcsc group G, then $\Gamma \text{ME} \Delta$.

Measure equivalence, restricted to the family of Baumslag-Solitar groups:

- Ornstein-Weiss '80 implies BS(1, p) forms a ME-class.
- Commensurability implies all BS(p, p) are ME.
- Kida '14 proves BS(p, p) actually form a ME-class.
- Partial results for the third family.

Main theorem

Completes the classification of BS(p, q) up to ME.

 (X, μ) standard probability space e.g [0, 1] with Lebesgue measure.

 $E \subset X^2$ Borel equivalence relation with countable classes.

E preserves the measure class (**pcm**) of μ : if *A* is null, the saturation $[A]_E$ is null.

All such equivalence relations arises as non-singular action of countable groups (Feldman – Moore '77)

Baumslag-Solitar groups Definitions Measure equivalence Cocycle T_{p,q} treeing Main theorem Type III Type III Relations Krieger flows

 (X, μ, E) pcm: Radon-Nikodym cocycle $\mathfrak{w} : E \to (0, \infty)$ satisfying:

• For almost all $x \in X$, for all $y, z \in [x]_E$: $\mathfrak{w}(z, y)\mathfrak{w}(y, x) = \mathfrak{w}(z, x)$

• For all
$$f: E \to [0,\infty]$$
:

$$\int_X \sum_{y \in [x]_E} f(x, y) \, \mathrm{d}\mu = \int_X \sum_{y \in [x]_E} f(y, x) \mathfrak{w}(y, x) \, \mathrm{d}\mu$$

Baumslag-Solitar groups Definitions Measure equivalence Cocycle T_{p,q} treeing Main theorem Type III Relations Krieger flows

Denote $T_{p,q}$ for the transitive directed tree with indeg $\equiv q$ and outdeg $\equiv p$

Figure: $T_{2,3}$

Baumslag-Solitar groups Defi Measure equivalence Coc Main theorem Type Type III Relations Krie

Definitions Cocycle *T_{p,q}* treeing Type III Krieger flows

Definition (Cocycle $T_{p,q}$ treeing)

A **cocycle** $T_{p,q}$ **treeing** on (X, μ) is a Borel directed graph $G \subset X^2$ such that:

- Each connected component is isomorphic to $T_{p,q}$
- For each directed edge $y \rightarrow x$,

$$\mathfrak{w}(y,x)=rac{p}{q}$$

Abbreviate to $CT_{p,q}$.

Baumslag-Solitar groups Definitions Measure equivalence Cocycle T_{p,q} treeing Main theorem Type III Type III Relations Krieger flows

$$CT_{p,q}$$
 on $(X,\mu) \iff$ free pmp $\operatorname{Aut}(T_{p,q}) \frown (\widetilde{X},\widetilde{\mu})$

 $\operatorname{Aut}(T_{p,q})\operatorname{\mathsf{ME}}\operatorname{\mathsf{Aut}}(T_{r,s}) \Longrightarrow \operatorname{\mathsf{BS}}(p,q)\operatorname{\mathsf{ME}}\operatorname{\mathsf{BS}}(r,s) ext{ (not easy)}$

Question

Given (X, ν, G) a $CT_{r,s}$, does there exist a prob. measure $\mu \sim \nu$ and a graph G' with the same conn. comp. s.t (X, μ, G') is a $CT_{p,q}$?

Cost and related notions give obstructions to similar questions.

Crucial definition:

Definition

 (X, μ, E) pcm is **type III** if there are no σ -finite measures $\nu \sim \mu$ preserved by E, aka $\mathfrak{w}_{\mu} \equiv 1$.

All $CT_{p,q}$ are type III.

Equivalently, if all complete sections $A, B \subset X$ are in bijection with a full pseudo-group element.

Definitions Cocycle *T_{p,q}* treeing **Type III** Krieger flows

Theorem (P., '24+)

If (X, μ, E) is pcm, type III, aperiodic, treeable and $d \in \{2, ..., \infty\}$, then there is a free mcp action $\mathbf{F}_d \curvearrowright (X, \mu)$ such that $E = E_{\mathbf{F}_d}$ and the Schreier graph has no vanishing ends.

Without vanishing ends -> True in a Borel way for compressible CBER. False for $II_\infty.$

Techniques to prove this theorem are useful to construct $CT_{p,q}$.

Baumslag-Solitar groups Definitions Measure equivalence Cocycle T_{p,q} treeing Main theorem Type III Type III Relations Krieger flows

Let (X, E, μ) be pcm.

Definition

The **Maharam extension** of *E* on $X \times \mathbf{R}$ is defined by

$$(x,r) E^{M}(y,s) \iff x E y \& r - \log \mathfrak{w}(y,x) = s$$

The Maharam E^M preserves the measure $\mu \times e^t dt$.

The flow $\mathbf{R} \curvearrowright X \times \mathbf{R}$ on the second coordinate preserves E^M .

 Baumslag-Solitar groups
 Definitions

 Measure equivalence
 Cocycle T_{p,q} treeing

 Main theorem
 Type III

 Type III Relations
 Krieger flows

Let (X, E, μ) be pcm and E^M its Maharam extension on $X \times \mathbf{R}$.

Definition

The **Krieger flow K**_E is the induced mcp flow $\mathbf{R} \curvearrowright \Omega$ on the space of ergodic components of E^M . More info.

For our proof, Kronecker flows on torii $\mathbf{R} \curvearrowright [0, \log \frac{s}{r}) \times [0, \log \frac{q}{p})$.

Krieger flow of a pmp action of Aut $(T_{r,s}) \frown U \times [0, \log \frac{q}{p})$, where U is mixing and act by modular homomorphism on second coordinate.

Baumslag-Solitar groups Definitions Measure equivalence Cocycle $T_{p,q}$ treeing Main theorem Type III Type III Relations Krieger flows

If $F \leq E$ is a subequivalence relation, there is mcp factor map $\mathbf{K}_F \twoheadrightarrow \mathbf{K}_E$.

Theorem (D. Gaboriau, P., A. Tserunyan, R. Tucker-Drob, K. Wróbel, '24+)

Let (X, μ, G) be a type III mcp graph with aperiodic Krieger flow \mathbf{K}_E . Then there is a hyperfinite subgraph $H \leq G$ for which the factor $\mathbf{K}_H \rightarrow \mathbf{K}_G$ is a conjugacy.

Question: What about periodic Krieger flow?

Thank you!

Let (X, E, μ) be a pcm CBER.

An ergodic decomposition is a *E*-invariant map $\pi: X \to Z$ with the universal property: every *E*-invariant map $\rho: X \to Y$ factors through π : there is $f: Z \to Y$ such that $\rho = f \circ \pi$.

▶ return