Introduction to L.O groups CBERs related to L.O groups Complexity of ${\rm Aut}(\mathbb{Z}^2) \curvearrowright {\rm LO}(\mathbb{Z}^2)$

Borel Complexity of Archimedean Orders

Antoine Poulin

April 19, 2022

Antoine Poulin Borel Complexity of Archimedean Orders

Definition of Left-Orderable Groups Positive cones Space of Left-Orderings Archimedean Orders

Left-Orderable groups

Throughout, Γ is an infinite group.

Definition

A total order on a group Γ is a **left-order** if

$$g < h \Rightarrow kg < kh$$
.

We say that Γ is **left-orderable** if there is some left-order on it.

Definition of Left-Orderable Groups Positive cones Space of Left-Orderings Archimedean Orders

Examples

- $\bullet~\mathbb{Z},\mathbb{Q},\mathbb{R}$ are all left-orderable groups.
- If H, K are left-orderable groups and

$$1 \to K \to \Gamma \to H \to 1$$

Γ is left-orderable.

• $\Gamma = \langle x, y | yxy^{-1} = x^{-1} \rangle$ is a semi-direct product $\mathbb{Z} \rtimes \mathbb{Z}$, hence left-orderable.

Definition of Left-Orderable Groups Positive cones Space of Left-Orderings Archimedean Orders

Different Characterization

Definition

We say that $P \subset \Gamma$ is a **positive cone** if

•
$$P \cdot P \subset P$$

•
$$P \sqcup P^{-1} = \Gamma - \{1\}$$

Proposition

If < is a left-order on Γ ,

$$P_{<} := \{g \in \Gamma : g > \mathsf{id}\}$$

is a positive cone.

Definition of Left-Orderable Groups Positive cones Space of Left-Orderings Archimedean Orders

Duality between Orders and Cones

On the other hand, if P is a positive cone, we get a left-order :

$$g <_P h \Leftrightarrow g^{-1}h \in P.$$

Proposition • $P = P_{<_P}$ • $g < h \Leftrightarrow g <_{P_<} h$

Definition of Left-Orderable Groups Positive cones Space of Left-Orderings Archimedean Orders

Definition of $LO(\Gamma)$

Since left-orders and positive cones are interchangeable,

Definition

The space of left-orders of Γ is defined as

$$\mathsf{LO}(\Gamma) := \left\{ P \in 2^{\Gamma} : P \text{ is a positive cone} \right\}$$

If Γ is countable, this is compact Polish.

Definition of Left-Orderable Groups Positive cones Space of Left-Orderings Archimedean Orders

Definition of Archimedean Orders

Definition

We say that an order is **Archimedean** if there is for any $g, h \in P_{<}$,

$$\exists n, h < g^n$$

We extend this definition to positive cones. We also have a Polish space of Archimedean order, $Ar(\Gamma)$.

Definition of Left-Orderable Groups Positive cones Space of Left-Orderings Archimedean Orders

Examples

- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are Archimedean-orderable.
- $\Gamma = \langle x, y \, | \, yxy^{-1} = x^{-1} \rangle$ admits no Archimedean order.

Isomorphism Action

Definition of Isomorphism Action

Definition

The isomorphism action $Aut(\Gamma) \frown LO(\Gamma)$ is defined by

$$\phi \cdot P := \phi(P) = \{\phi(h) : h \in P\}.$$

This restricts to an action

 $\mathsf{Aut}(\Gamma) \curvearrowright \mathsf{Ar}(\Gamma)$

Introduction to L.O groups CBERs related to L.O groups Complexity of $\operatorname{Aut}(\mathbb{Z}^2) \curvearrowright \operatorname{LO}(\mathbb{Z}^2)$

Motivation

The problem Characterization of $Ar(\mathbb{Z}^2)$ Bireducibility to Möbius Transformations Complexity of Möbius Transformations

We are interested in the complexity of $GL(\mathbb{Z}^2) \curvearrowright Ar(\mathbb{Z}^2),$ motivated by

Theorem, Calderoni-Marker-Motto Ros-Shani

 $\mathsf{GL}(\mathbb{Q}^2) \curvearrowright \mathsf{Ar}(\mathbb{Q}^2)$ is not smooth.

Still not known whether it is hyperfinite.

The problem **Characterization of Ar**(\mathbb{Z}^2) Bireducibility to Möbius Transformations Complexity of Möbius Transformations

What does $Ar(\mathbb{Z}^2)$ look like?

Theorem, folklore

If $P \in LO(\mathbb{Z}^2)$, there is a line Δ such that $\mathbb{R}^2 - \Delta$ has one component with only positive elements and one component with only negative elements.

If $P \in Ar(\mathbb{Z}^2)$, $\Delta \cap \mathbb{Z}^2 = \emptyset$.

The problem **Characterization of Ar**(\mathbb{Z}^2) Bireducibility to Möbius Transformations Complexity of Möbius Transformations

The big picture

Figure – A positive cone in \mathbb{Z}^2 . Bigger dots represent elements of *P* and the shaded region is the half-plane containing only positive elements.

Introduction to L.O groups CBERs related to L.O groups Complexity of Aut(\mathbb{Z}^2) $\sim LO(\mathbb{Z}^2)$

Consequences

The problem **Characterization of Ar**(\mathbb{Z}^2) Bireducibility to Möbius Transformations Complexity of Möbius Transformations

There is a 2-1 map from $Ar(\mathbb{Z}^2)$ to line Δ which do not intersect \mathbb{Z}^2 . This is equivalent to having $\begin{pmatrix} \alpha \\ 1 \end{pmatrix} \in \Delta$, where α is irrational.

We can act as if the map is 1-1, since in each preimage we can pick canonically the cone with $\begin{pmatrix} 0\\1 \end{pmatrix} \in P$.

Definition

The problem Characterization of $Ar(\mathbb{Z}^2)$ **Bireducibility to Möbius Transformations** Complexity of Möbius Transformations

Definition

The action by Möbius transformations is the action ${\sf GL}(\mathbb{Z}^2) \curvearrowright {\sf Irr}$ defined by

$$\begin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{pmatrix} \cdot \alpha := \frac{\mathsf{a}\alpha + \mathsf{b}}{\mathsf{c}\alpha + \mathsf{d}}$$

Introduction to L.O groups CBERs related to L.O groups Complexity of $Aut(\mathbb{Z}^2) \curvearrowright LO(\mathbb{Z}^2)$

The problem Characterization of Ar(Z²) Bireducibility to Möbius Transformations Complexity of Möbius Transformations

Action on lines

If
$$\begin{pmatrix} \alpha \\ 1 \end{pmatrix} \in \Delta$$
,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ 1 \end{pmatrix} \in \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \Delta$$
$$\Rightarrow \begin{pmatrix} a\alpha + b \\ c\alpha + d \end{pmatrix} \in \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \Delta$$
$$\Rightarrow \begin{pmatrix} \frac{a\alpha + b}{c\alpha + d} \\ 1 \end{pmatrix} \in \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \Delta$$

Introduction to L.O groups CBERs related to L.O groups Complexity of Aut(\mathbb{Z}^2) $\sim LO(\mathbb{Z}^2)$

The problem Characterization of $Ar(\mathbb{Z}^2)$ Bireducibility to Möbius Transformations Complexity of Möbius Transformations

Recap

• The action $GL(\mathbb{Z}^2) \curvearrowright Ar(\mathbb{Z}^2)$ is bireducible to the action $GL(\mathbb{Z}^2)$ on lines with irrational slope.

• The action $GL(\mathbb{Z}^2)$ on lines with irrational slope is bireducible with the action by Möbius transformations.

The problem Characterization of $Ar(\mathbb{Z}^2)$ Bireducibility to Möbius Transformations Complexity of Möbius Transformations

Continuous fractions

There is an homeomorphism $\mathsf{Irr}\cong\mathbb{N}^{\mathbb{N}}$ defined by

$$[a_0, a_1, \ldots] := a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \ldots}}$$

The problem Characterization of $Ar(\mathbb{Z}^2)$ Bireducibility to Möbius Transformations Complexity of Möbius Transformations

Generators for $GL(\mathbb{Z}^2)$

We know that $\mathsf{GL}(\mathbb{Z}^2)$ is generated by

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

These matrices act nicely through Möbius transformations.

The problem Characterization of $Ar(\mathbb{Z}^2)$ Bireducibility to Möbius Transformations Complexity of Möbius Transformations

First two matrices

We have that

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot [a_0, a_1, \ldots] = \begin{cases} [a_1, a_2, a_3, \ldots] & \text{if } a_0 = 0 \\ [0, a_0, a_1, \ldots] & \text{if } a_0 \neq 0 \end{cases}$$
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot [a_0, a_1, \ldots] = [a_0 + 1, a_1, \ldots]$$

Chaining these two matrices, we can get tail equivalence relation

$$[a_0, ..., a_n, c_0, c_1, ...] \sim [b_0, ..., b_m, c_0, c_1, ...]$$

Last Matrix

The problem Characterization of $Ar(\mathbb{Z}^2)$ Bireducibility to Möbius Transformations Complexity of Möbius Transformations

What about
$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
?

Theorem, noted in Jackson-Kechris-Louveau, proof found in Hardy-Wright

The orbit equivalence of Möbius transformations on $\mathbb{Z}\times\mathbb{N}^{\mathbb{N}}$ is exactly tail equivalence relation.

Introduction to L.O groups CBERs related to L.O groups Complexity of Aut(\mathbb{Z}^2) $\sim LO(\mathbb{Z}^2)$

The problem Characterization of $Ar(\mathbb{Z}^2)$ Bireducibility to Möbius Transformations Complexity of Möbius Transformations

Theorem

Theorem[P.]

The isomorphism relation $GL(\mathbb{Z}^2) \curvearrowright Ar(\mathbb{Z}^2)$ is hyperfinite, but not smooth.

Question[Calderoni-Marker-Motto Ros-Shani]

How complicated is $GL(\mathbb{Q}^n) \curvearrowright Ar(\mathbb{Q}^n)$?

The problem Characterization of ${\rm Ar}(\mathbb{Z}^2)$ Bireducibility to Möbius Transformations Complexity of Möbius Transformations

Higher dimensions

Theorem[P.]

The isomorphism relation $GL(\mathbb{Z}^n) \curvearrowright Ar(\mathbb{Z}^n)$ is not treeable for $n \ge 4$.

Proof based on work of Popa and Vaes.

The problem Characterization of $Ar(\mathbb{Z}^2)$ Bireducibility to Möbius Transformations Complexity of Möbius Transformations

Thank you!