Borel Complexity of Archimedean Orders

Antoine Poulin

April 19, 2022

Left-Orderable groups

Throughout, Γ is an infinite group.

Definition

A total order on a group Γ is a left-order if

$$
g<h \Rightarrow k g<k h .
$$

We say that Γ is left-orderable if there is some left-order on it.

Examples

- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are all left-orderable groups.
- If H, K are left-orderable groups and

$$
1 \rightarrow K \rightarrow \Gamma \rightarrow H \rightarrow 1
$$

Γ is left-orderable.

- $\Gamma=\left\langle x, y \mid y x y^{-1}=x^{-1}\right\rangle$ is a semi-direct product $\mathbb{Z} \rtimes \mathbb{Z}$, hence left-orderable.

Different Characterization

Definition

We say that $P \subset \Gamma$ is a positive cone if

- $P \cdot P \subset P$
- $P \sqcup P^{-1}=\Gamma-\{1\}$

Proposition

If $<$ is a left-order on Γ,

$$
P_{<}:=\{g \in \Gamma: g>\mathrm{id}\}
$$

is a positive cone.

Duality between Orders and Cones

On the other hand, if P is a positive cone, we get a left-order :

$$
g<_{P} h \Leftrightarrow g^{-1} h \in P .
$$

Proposition

- $P=P_{<p}$
- $g<h \Leftrightarrow g<p_{<} h$

Definition of LO(Г)

Since left-orders and positive cones are interchangeable,

Definition

The space of left-orders of Γ is defined as

$$
\mathrm{LO}(\Gamma):=\left\{P \in 2^{\Gamma}: P \text { is a positive cone }\right\}
$$

If Γ is countable, this is compact Polish.

Definition of Archimedean Orders

Definition

We say that an order is Archimedean if there is for any $g, h \in P_{<}$,

$$
\exists n, h<g^{n}
$$

We extend this definition to positive cones. We also have a Polish space of Archimedean order, $\operatorname{Ar}(\Gamma)$.

Examples

- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are Archimedean-orderable.
- $\Gamma=\left\langle x, y \mid y x y^{-1}=x^{-1}\right\rangle$ admits no Archimedean order.

Definition of Isomorphism Action

Definition

The isomorphism action Aut $(\Gamma) \curvearrowright \mathrm{LO}(\Gamma)$ is defined by

$$
\phi \cdot P:=\phi(P)=\{\phi(h): h \in P\}
$$

This restricts to an action

$$
\operatorname{Aut}(\Gamma) \curvearrowright \operatorname{Ar}(\Gamma)
$$

The problem

Motivation

We are interested in the complexity of $\mathrm{GL}\left(\mathbb{Z}^{2}\right) \curvearrowright \operatorname{Ar}\left(\mathbb{Z}^{2}\right)$, motivated by

Theorem, Calderoni-Marker-Motto Ros-Shani
 $\mathrm{GL}\left(\mathbb{Q}^{2}\right) \curvearrowright \operatorname{Ar}\left(\mathbb{Q}^{2}\right)$ is not smooth.

Still not known whether it is hyperfinite.

What does $\operatorname{Ar}\left(\mathbb{Z}^{2}\right)$ look like?

Theorem, folklore

If $P \in \operatorname{LO}\left(\mathbb{Z}^{2}\right)$, there is a line Δ such that $\mathbb{R}^{2}-\Delta$ has one component with only positive elements and one component with only negative elements.

If $P \in \operatorname{Ar}\left(\mathbb{Z}^{2}\right), \Delta \cap \mathbb{Z}^{2}=\emptyset$.

The big picture

Figure - A positive cone in \mathbb{Z}^{2}. Bigger dots represent elements of P and the shaded region is the half-plane containing only positive elements.

Consequences

There is a 2-1 map from $\operatorname{Ar}\left(\mathbb{Z}^{2}\right)$ to line Δ which do not intersect \mathbb{Z}^{2}. This is equivalent to having $\binom{\alpha}{1} \in \Delta$, where α is irrational.

We can act as if the map is $1-1$, since in each preimage we can pick canonically the cone with $\binom{0}{1} \in P$.

Definition

Definition

The action by Möbius transformations is the action $G L\left(\mathbb{Z}^{2}\right) \curvearrowright$ Irr defined by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot \alpha:=\frac{a \alpha+b}{c \alpha+d}
$$

Action on lines

If $\binom{\alpha}{1} \in \Delta$,

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{\alpha}{1} \in\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot \Delta \\
\Rightarrow & \binom{a \alpha+b}{c \alpha+d} \in\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot \Delta \\
\Rightarrow & \binom{\frac{a \alpha+b}{c \alpha+d}}{1} \in\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot \Delta
\end{aligned}
$$

Recap

- The action $\mathrm{GL}\left(\mathbb{Z}^{2}\right) \curvearrowright \operatorname{Ar}\left(\mathbb{Z}^{2}\right)$ is bireducible to the action $\mathrm{GL}\left(\mathbb{Z}^{2}\right)$ on lines with irrational slope.
- The action $\mathrm{GL}\left(\mathbb{Z}^{2}\right)$ on lines with irrational slope is bireducible with the action by Möbius transformations.

Continuous fractions

There is an homeomorphism $\operatorname{Irr} \cong \mathbb{N}^{\mathbb{N}}$ defined by

$$
\left[a_{0}, a_{1}, \ldots\right]:=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}}
$$

Generators for $\mathrm{GL}\left(\mathbb{Z}^{2}\right)$

We know that $\mathrm{GL}\left(\mathbb{Z}^{2}\right)$ is generated by

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

These matrices act nicely through Möbius transformations.

First two matrices

We have that

$$
\begin{aligned}
& \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cdot\left[a_{0}, a_{1}, \ldots\right]=\left\{\begin{array}{l}
{\left[a_{1}, a_{2}, a_{3}, \ldots\right] \text { if } a_{0}=0} \\
{\left[0, a_{0}, a_{1}, \ldots\right] \text { if } a_{0} \neq 0}
\end{array}\right. \\
& \left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \cdot\left[a_{0}, a_{1}, \ldots\right]=\left[a_{0}+1, a_{1}, \ldots\right]
\end{aligned}
$$

Chaining these two matrices, we can get tail equivalence relation

$$
\left[a_{0}, \ldots, a_{n}, c_{0}, c_{1}, \ldots\right] \sim\left[b_{0}, \ldots, b_{m}, c_{0}, c_{1}, \ldots\right]
$$

Last Matrix

What about $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$?

Theorem, noted in Jackson-Kechris-Louveau, proof found in Hardy-Wright

The orbit equivalence of Möbius transformations on $\mathbb{Z} \times \mathbb{N}^{\mathbb{N}}$ is exactly tail equivalence relation.

Theorem

Theorem[P.]

The isomorphism relation $\mathrm{GL}\left(\mathbb{Z}^{2}\right) \curvearrowright \operatorname{Ar}\left(\mathbb{Z}^{2}\right)$ is hyperfinite, but not smooth.

Question[Calderoni-Marker-Motto Ros-Shani]

How complicated is $\mathrm{GL}\left(\mathbb{Q}^{n}\right) \curvearrowright \operatorname{Ar}\left(\mathbb{Q}^{n}\right)$?

Higher dimensions

Theorem[P.]

The isomorphism relation $\mathrm{GL}\left(\mathbb{Z}^{n}\right) \curvearrowright \operatorname{Ar}\left(\mathbb{Z}^{n}\right)$ is not treeable for $n \geq 4$.

Proof based on work of Popa and Vaes.

Introduction to L.O groups CBERs related to L.O groups Complexity of $\operatorname{Aut}\left(\mathbb{Z}^{2}\right) \curvearrowright \mathrm{LO}\left(\mathbb{Z}^{2}\right)$

Thank you!

