Borel Complexity of Archimedean Orders

Antoine Poulin, McGill University

January 2023

Left-Orders Positive Cones Space of left-orders Archimedean orders

Throughout, Γ is a countable group.

Definition (Left-Orders on Groups)

A total order < on Γ is a **left-order** if it is invariant by multiplication on the left:

$$h < k \Longleftrightarrow gh < gk$$

Left-Orders Positive Cones Space of left-orders Archimedean orders

An equivalent formulation is the following:

Definition (Positive Cones)

A subset $P \subset \Gamma$ is a **positive cone** if:

- *P* is a semigroup: $P \cdot P \subset P$.
- The group Γ is partitioned as $\Gamma = P \sqcup \{1\} \sqcup P^{-1}$.

Given a left-order <, an element g is **positive** if

g > 1.

Left-Orders Positive Cones Space of left-orders Archimedean orders

Definition (Space of left-orders)

The space of left-orders is

 $LO(\Gamma) = \{P \subset \Gamma : P \text{ is a positive cone.}\}$

This is a compact Polish space. There is a Borel action $Aut(\Gamma) \curvearrowright LO(\Gamma)$ given by

$$h(\phi \cdot <) k \quad \longleftrightarrow \quad \phi^{-1}(h) < \phi^{-1}(k)$$

This is the **automorphism action**. It also restricts to the **conjugacy action** $\Gamma \curvearrowright LO(\Gamma)$.

Left-Orders Positive Cones Space of left-orders Archimedean orders

Definition (Archimedean Order + Space)

A left-order is **Archimedean** if for all g, h > 1, there exists $n \in \mathbb{N}$ such that

 $g < h^n$.

The space of Archimedean orders $Ar(\Gamma)$ is a G_{δ} subset of $LO(\Gamma)$.

Theorem (Hölder)

If $(\Gamma, <)$ is an Archimedean ordered group, it is isomorphic (as ordered groups) to a subgroup of \mathbb{R} . In particular, the only f.g Archimedean orderable groups are isomorphic (as groups) to \mathbb{Z}^n .

Main goal: link properties of Γ to complexity results on $LO(\Gamma)$ or $Ar(\Gamma)$.

Theorem (Calderoni - Clay, 2020)

If $E(\Gamma \frown LO(\Gamma)$ is smooth, then Γ is locally indicable. (Every f.g subgroups surjects onto \mathbb{Z})

More work has be done by Filippo and Adam studying links to the L-space conjecture.

Theorem (Calderoni - Clay, 2023)

The conjugacy relation for $\Gamma = BS(1,2)$ is bireducible to E_0 , providing the first such example.

Context Main Theorem

Theorem (Calderoni - Marker - Motto Ros - Shani)

The equivalence relation $E(GL_2(\mathbb{Q}) \curvearrowright Ar(\mathbb{Q}^2))$ is not smooth.

Question - CMMRS

- Is $E(GL_2(\mathbb{Q}) \frown Ar(\mathbb{Q}^2))$ hyperfinite?
- What is the complexity of E(GL_n(ℚ) へ Ar(ℚⁿ)) for n ≥ 3?

Context Main Theorem

Theorem (P.)

The equivalence relation $E(GL_n(\mathbb{Z}) \curvearrowright Ar(\mathbb{Z}^n))$ is

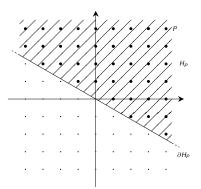
- hyperfinite if n = 2.
- not hyperfinite if $n \ge 3$.
- not treeable if $n \ge 4$.

Let us look at hyperfiniteness. Implicitly, we will often be jumping between index two equivalence relations, corresponding to:

- $SL_n(\mathbb{Z})$ vs $GL_n(\mathbb{Z})$
- Choice of orientation of order: To every order <, there is a reverse order >.

What Hölder tells us The Grassmanian vs the dual

Hölder's theorem is really about linear algebra:



 $\{ \text{ Orders } \} = \{ \text{ Half-planes } \} = \{ (\text{Projectivized}) \text{ Functionals } \}$

We have actions of $GL_n(\mathbb{Z})$ on

 $Gr(n, n-1) = \{ \text{co-dimension 1 hyperplanes} \} \text{ vs } \mathbf{P}_{>0}((\mathbb{R}^n)^*)$

There is a Plücker embedding:

$$\mathsf{P}\left(\bigwedge^{n-1}\mathbb{R}^n
ight)$$
 vs $\mathsf{P}_{>0}((\mathbb{R}^n)^*)$

To deal away with projectivization, one uses work of Ronnie and Alekos on structurable equivalence relations.

We have actions of $GL_n(\mathbb{Z})$ on

$$\bigwedge^{n-1} \mathbb{R}^n$$
 vs $(\mathbb{R}^n)^*$

The question becomes: What are the actions induced by $GL_n(\mathbb{Z}) \curvearrowright \mathbb{R}^n$? These two are isomorphic to \mathbb{R}^n as vector spaces.

For dual: Act by the adjoint/transpose through the isomorphism taking $v \mapsto \langle v, \cdot \rangle$.

What Hölder tells us The Grassmanian vs the dual

There is a basis for $\bigwedge^{n-1} \mathbb{R}^n$ given by $\widehat{e}_k = e_1 \land ... \land e_{k-1} \land e_{k+1} \land ... \land e_n$. Calculation ...

If $M \in GL_n(\mathbb{Z})$, $\widetilde{M} \ \widehat{e}_i = ... + \det(M_{ij})\widehat{e}_j + ...$

where M_{ij} is the matrix with *i*th row and *j*th column removed.

So the induced action is almost by the "classical adjoint"!

adj
$$M = \left((-1)^{1+i+j} \det M_{ij}
ight)$$

so once check that the classical adjoint is "surjective", one gets the same equivalence relation that $E(GL_n(\mathbb{R}) \curvearrowright \mathbb{R}^n)$, so one studies that.

What Hölder tells us The Grassmanian vs the dual

Thank you!

Antoine Poulin, McGill University Borel Complexity of Archimedean Orders