Quasi-treeable equivalence relations

Antoine Poulin

McGill

joint with: Ronnie Chen (University of Michigan), Ran Tao (McGill), Anush Tserunyan (McGill)

A group is free iff it has a Cayley graph which is a tree.

A group is free iff it has a Cayley graph which is a tree.

Theorem (classical)

A f.g. group Γ is virtually free iff it has a Cayley graph G which is a quasi-tree.

Quasi-tree \leftarrow graph quasi-isometric to a tree $\exists f : G \rightarrow T$ which

- f roughly preserves geometry,
- f is roughly surjective.

A group is free iff it has a Cayley graph which is a tree.

Theorem (classical)

A f.g. group Γ is virtually free iff it has a Cayley graph G which is a quasi-tree.

Quasi-tree \leftarrow graph quasi-isometric to a tree $\exists f : G \rightarrow T$ which

- f roughly preserves geometry,
- f is roughly surjective.

There are M > 1, K > 0 s.t.

$$rac{1}{M}d_{\mathcal{T}}(f(x),f(y))-K \leq d_G(x,y) \leq Md_{\mathcal{T}}(f(x),f(y))+K,\ d_{\mathcal{T}}(\mathsf{im}(f),z) \leq K.$$

for all $x, y \in V(G)$ and $z \in V(T)$.

Measured and Borel dynamics: study Γ via orbit equiv. rel. E_{Γ} of its free actions.

Measured and Borel dynamics: study Γ via orbit equiv. rel. E_{Γ} of its free actions. Γ free, $\Gamma \curvearrowright X$ free $\implies E_{\Gamma}$ treeable.

Measured and Borel dynamics: study Γ via orbit equiv. rel. ${\it E}_{\Gamma}$ of its free actions.

 Γ free, $\Gamma \curvearrowright X$ free $\implies E_{\Gamma}$ treeable.

 Γ virtually free, $\Gamma \curvearrowright X$ free $\implies E_{\Gamma}$ quasi-treeable.

Measured and Borel dynamics: study Γ via orbit equiv. rel. E_{Γ} of its free actions.

 Γ free, $\Gamma \curvearrowright X$ free $\implies E_{\Gamma}$ treeable.

 Γ virtually free, $\Gamma \curvearrowright X$ free $\implies E_{\Gamma}$ quasi-treeable.

Theorem (Jackson–Kechris–Louveau 2002)

 Γ virtually free, $\Gamma \curvearrowright X$ free $\implies E_{\Gamma}$ treeable.

Measured and Borel dynamics: study Γ via orbit equiv. rel. E_{Γ} of its free actions.

 Γ free, $\Gamma \curvearrowright X$ free $\implies E_{\Gamma}$ treeable.

 Γ virtually free, $\Gamma \curvearrowright X$ free $\implies E_{\Gamma}$ quasi-treeable.

Theorem (Jackson–Kechris–Louveau 2002)

 Γ virtually free, $\Gamma \curvearrowright X$ free $\implies E_{\Gamma}$ treeable.

Question

If a CBER is quasi-treeable, must it be treeable?

Measured and Borel dynamics: study Γ via orbit equiv. rel. E_{Γ} of its free actions.

 Γ free, $\Gamma \curvearrowright X$ free $\implies E_{\Gamma}$ treeable.

 Γ virtually free, $\Gamma \curvearrowright X$ free $\implies E_{\Gamma}$ quasi-treeable.

Theorem (Jackson–Kechris–Louveau 2002)

 Γ virtually free, $\Gamma \curvearrowright X$ free $\implies E_{\Gamma}$ treeable.

Question

If a CBER is quasi-treeable, must it be treeable?

No, for bad reasons.

Measured and Borel dynamics: study Γ via orbit equiv. rel. E_{Γ} of its free actions.

 Γ free, $\Gamma \curvearrowright X$ free $\implies E_{\Gamma}$ treeable.

 Γ virtually free, $\Gamma \curvearrowright X$ free $\implies E_{\Gamma}$ quasi-treeable.

Theorem (Jackson–Kechris–Louveau 2002)

 Γ virtually free, $\Gamma \curvearrowright X$ free $\implies E_{\Gamma}$ treeable.

Better Question

If a CBER is I.f. quasi-treeable, must it be treeable?

Let $E \subseteq X^2$ be a CBER, $G \subseteq E$ be a locally finite graphing whose each component is (abstractly) a quasi-tree.

- (i) If G is one-ended, then E is hyperfinite.
- (ii) If G has bounded degree, then E is treeable.

Let $E \subseteq X^2$ be a CBER, $G \subseteq E$ be a locally finite graphing whose each component is (abstractly) a quasi-tree.

- (i) If G is one-ended, then E is hyperfinite.
- (ii) If G has bounded degree, then E is treeable.

Let $E \subseteq X^2$ be a CBER, $G \subseteq E$ be a locally finite graphing whose each component is (abstractly) a quasi-tree.

(i) If G is one-ended, then E is hyperfinite.

(ii) If G has bounded degree, then E is treeable.

Manning's bottleneck criterion (2005)

x

A graph $G \subseteq X^2$ is a quasi-tree iff there exists K > 0 s.t. every $x, y \in X$ have an K-approx. midpoint m:

$$d(x,m) \approx \frac{1}{2}d(x,y) \approx d(m,y),$$

x, y lie in different components of $B(m,K)^{c}$

Let $G \subseteq X^2$ be a locally finite one-ended quasi-tree. Then G is hyperfinite.

Let $G \subseteq X^2$ be a locally finite one-ended quasi-tree. Then G is hyperfinite.

Fix K witnessing Manning's bottleneck criterion. For Q > 0, call $x \in X$ a Q-leaf if $B(x, 2K) \cup$ finite components of $X \setminus B(x, 2K) \subseteq B(x, Q)$.

Let $G \subseteq X^2$ be a locally finite one-ended quasi-tree. Then G is hyperfinite.

Fix K witnessing Manning's bottleneck criterion. For Q > 0, call $x \in X$ a Q-leaf if $B(x, 2K) \cup$ finite components of $X \setminus B(x, 2K) \subseteq B(x, Q)$. $X_Q = \{x \in X : x \text{ is a } Q\text{-leaf}\}.$

Let $G \subseteq X^2$ be a locally finite one-ended quasi-tree. Then G is hyperfinite.

Fix K witnessing Manning's bottleneck criterion. For Q > 0, call $x \in X$ a Q-leaf if $B(x, 2K) \cup$ finite components of $X \setminus B(x, 2K) \subseteq B(x, Q)$. $X_Q = \{x \in X : x \text{ is a } Q\text{-leaf}\}.$

Lemma

- Every $x \in X$ is a Q-leaf for some Q.
- $X_Q \nearrow X$ and $E(G \downarrow X_Q) \nearrow E(G)$.
- Each connected component of X_Q has diameter $\leq 2Q + 4K$.

• Let x, y be Q-leaves in the same component with d(x, y) > 2Q + 4K.

- Let x, y be Q-leaves in the same component with d(x, y) > 2Q + 4K.
- Let *m* be an *K*-approx. midpoint.

- Let x, y be Q-leaves in the same component with d(x, y) > 2Q + 4K.
- Let *m* be an *K*-approx. midpoint.
- Let m' be another Q-leaf in the same component with d(m, m') ≤ K. This exists since there is a path of Q-leaves linking x, y.

- Let x, y be Q-leaves in the same component with d(x, y) > 2Q + 4K.
- Let *m* be an *K*-approx. midpoint.
- Let m' be another Q-leaf in the same component with d(m, m') ≤ K. This exists since there is a path of Q-leaves linking x, y.
- Then m' is a 2K-approx. midpoint.

- Let x, y be Q-leaves in the same component with d(x, y) > 2Q + 4K.
- Let *m* be an *K*-approx. midpoint.
- Let m' be another Q-leaf in the same component with d(m, m') ≤ K. This exists since there is a path of Q-leaves linking x, y.
- Then m' is a 2K-approx. midpoint.
- WLOG x is in a finite component of $B(m', 2K)^c$.

- Let x, y be Q-leaves in the same component with d(x, y) > 2Q + 4K.
- Let *m* be an *K*-approx. midpoint.
- Let m' be another Q-leaf in the same component with d(m, m') ≤ K. This exists since there is a path of Q-leaves linking x, y.
- Then m' is a 2K-approx. midpoint.
- WLOG x is in a finite component of $B(m', 2K)^c$.
- But $d(x,m') \geq \frac{1}{2}d(x,y) 2K > \frac{1}{2}(2Q+4K) 2K = Q.$

- Let x, y be Q-leaves in the same component with d(x, y) > 2Q + 4K.
- Let *m* be an *K*-approx. midpoint.
- Let m' be another Q-leaf in the same component with d(m, m') ≤ K. This exists since there is a path of Q-leaves linking x, y.
- Then m' is a 2K-approx. midpoint.
- WLOG x is in a finite component of $B(m', 2K)^c$.
- But $d(x,m') \geq \frac{1}{2}d(x,y) 2K > \frac{1}{2}(2Q+4K) 2K = Q.$
- m' cannot possibly be a Q-leaf. #

A degree $\leq D$ Borel quasi-tree $G \subseteq X^2$ is "canonically" quasi-isometric to a tree. In particular, E_G is treeable.

A degree $\leq D$ Borel quasi-tree $G \subseteq X^2$ is "canonically" quasi-isometric to a tree. In particular, E_G is treeable.

Wishful thinking: Idea of coarse points.

A degree $\leq D$ Borel quasi-tree $G \subseteq X^2$ is "canonically" quasi-isometric to a tree. In particular, E_G is treeable.

Wishful thinking: Idea of coarse points.

Fix K witnessing bottleneck criterion. Consider the set of oriented cuts

 $\mathcal{C} = \{A \subseteq X \mid A, \neg A \text{ connected } \& \text{ diam}(\partial A) \leq 2K + 2\} \cup \{\emptyset, X\}.$

A degree $\leq D$ Borel quasi-tree $G \subseteq X^2$ is "canonically" quasi-isometric to a tree. In particular, E_G is treeable.

Wishful thinking: Idea of coarse points.

Fix K witnessing bottleneck criterion. Consider the set of oriented cuts

$$\mathcal{C} = \{A \subseteq X \mid A, \neg A \text{ connected } \& \text{ diam}(\partial A) \leq 2K + 2\} \cup \{\emptyset, X\}.$$

 $\mathcal C$ is a poset under subsets and closed under complements, hence is a pocset.

A degree $\leq D$ Borel quasi-tree $G \subseteq X^2$ is "canonically" quasi-isometric to a tree. In particular, E_G is treeable.

Wishful thinking: Idea of coarse points.

Fix K witnessing bottleneck criterion. Consider the set of oriented cuts

$$\mathcal{C} = \{A \subseteq X \mid A, \neg A \text{ connected } \& \text{ diam}(\partial A) \le 2K + 2\} \cup \{\emptyset, X\}.$$

 \mathcal{C} is a poset under subsets and closed under complements, hence is a pocset.

Lemma

Each $\emptyset, X \neq A \in \mathcal{C}$ is adjacent to $\leq 3^{D^{12K+10}}$ other $\emptyset, X \neq B \in \mathcal{C}$.

 $A, B \in \mathcal{C}$ are **adjacent** if they "cross" or don't cross but there's "no cut in between".

We reduce G to the following graph \widehat{G} :

$$V(\widehat{G}) = \{ U \subset \mathcal{C} : U \text{ is a clopen ultrafilter} \}$$

Every such ultrafilter has a \subseteq -minimal elements, which must be adjacent, hence there is a uniform bound.

We reduce G to the following graph \widehat{G} :

$$V(\widehat{G}) = \{ U \subset \mathcal{C} : U \text{ is a clopen ultrafilter} \}$$

Every such ultrafilter has a \subseteq -minimal elements, which must be adjacent, hence there is a uniform bound.

$$E(\widehat{G}) = \{(U, V) : U, V \text{ differs at exactly one minimal element of } U\}$$

We reduce G to the following graph \widehat{G} :

$$V(\widehat{G}) = \{ U \subset \mathcal{C} : U \text{ is a clopen ultrafilter} \}$$

Every such ultrafilter has a \subseteq -minimal elements, which must be adjacent, hence there is a uniform bound.

 $E(\widehat{G}) = \{(U, V) : U, V \text{ differs at exactly one minimal element of } U\}$

There is a uniform bound on degree, hence finite edge coloring (KST).

We reduce G to the following graph \widehat{G} :

$$V(\widehat{G}) = \{ U \subset \mathcal{C} : U \text{ is a clopen ultrafilter} \}$$

Every such ultrafilter has a \subseteq -minimal elements, which must be adjacent, hence there is a uniform bound.

 $E(\widehat{G}) = \{(U, V) : U, V \text{ differs at exactly one minimal element of } U\}$

There is a uniform bound on degree, hence finite edge coloring (KST).

Further, this forms a **median graph**, which is the skeleton of a CAT(0) cube complex. This gives a notion of convexity and half-planes.

We reduce G to the following graph \widehat{G} :

$$V(\widehat{G}) = \{ U \subset \mathcal{C} : U \text{ is a clopen ultrafilter} \}$$

Every such ultrafilter has a \subseteq -minimal elements, which must be adjacent, hence there is a uniform bound.

 $E(\widehat{G}) = \{(U, V) : U, V \text{ differs at exactly one minimal element of } U\}$

There is a uniform bound on degree, hence finite edge coloring (KST).

Further, this forms a **median graph**, which is the skeleton of a CAT(0) cube complex. This gives a notion of convexity and half-planes.

Cycle cut using the finite coloring and geometry of half-planes.

Thank you!