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Setting

A group is free iff it has a Cayley graph which is a tree.

Theorem (classical)

A f.g. group Γ is virtually free iff it has a Cayley graph G which is a quasi-tree.

Quasi-tree ← graph quasi-isometric to a tree ∃f : G → T which

f roughly preserves geometry,

f is roughly surjective.

There are M > 1,K > 0 s.t.

1
M dT (f (x), f (y))− K ≤ dG (x , y) ≤ MdT (f (x), f (y)) + K ,

dT (im(f ), z) ≤ K .

for all x , y ∈ V (G ) and z ∈ V (T ).
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Setting

Measured and Borel dynamics: study Γ via orbit equiv. rel. EΓ of its free actions.

Γ free, Γ ↷ X free =⇒ EΓ treeable.

Γ virtually free, Γ ↷ X free =⇒ EΓ quasi-treeable.

Theorem (Jackson–Kechris–Louveau 2002)

Γ virtually free, Γ ↷ X free =⇒ EΓ treeable.

Question

If a CBER is quasi-treeable, must it be treeable?

No, for bad reasons.
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Setting

Measured and Borel dynamics: study Γ via orbit equiv. rel. EΓ of its free actions.

Γ free, Γ ↷ X free =⇒ EΓ treeable.

Γ virtually free, Γ ↷ X free =⇒ EΓ quasi-treeable.

Theorem (Jackson–Kechris–Louveau 2002)

Γ virtually free, Γ ↷ X free =⇒ EΓ treeable.

Better Question

If a CBER is l.f. quasi-treeable, must it be treeable?



Results

Theorem (R. Chen, A. P., R. Tao, A. Tserunyan 2023+)

Let E ⊆ X 2 be a CBER, G ⊆ E be a locally finite graphing whose each component is
(abstractly) a quasi-tree.

(i) If G is one-ended, then E is hyperfinite.

(ii) If G has bounded degree, then E is treeable.

Manning’s bottleneck criterion (2005)

A graph G ⊆ X 2 is a quasi-tree iff there exists K > 0 s.t. every x , y ∈ X have an
K -approx. midpoint m:

d(x ,m) ≈ 1
2d(x , y) ≈ d(m, y),

x , y lie in different components of B(m,K )c .
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Proof: The one-ended case

Theorem I (R. Chen, A. P., R. Tao, A. Tserunyan)

Let G ⊆ X 2 be a locally finite one-ended quasi-tree. Then G is hyperfinite.

Fix K witnessing Manning’s bottleneck criterion. For Q > 0, call x ∈ X a Q-leaf if

B(x , 2K ) ∪ finite components of X \ B(x , 2K ) ⊆ B(x ,Q).

XQ = {x ∈ X : x is a Q-leaf} .

Lemma

Every x ∈ X is a Q-leaf for some Q.

XQ ↗ X and E (G ⇂ XQ)↗ E (G ).

Each connected component of XQ has diameter ≤ 2Q + 4K .
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Proof: The one-ended case

Let x , y be Q-leaves in the same component with d(x , y) > 2Q + 4K .

Let m be an K -approx. midpoint.

Let m′ be another Q-leaf in the same component with d(m,m′) ≤ K . This exists
since there is a path of Q-leaves linking x , y .

Then m′ is a 2K -approx. midpoint.

WLOG x is in a finite component of B(m′, 2K )c .

But d(x ,m′) ≥ 1
2d(x , y)− 2K > 1

2(2Q + 4K )− 2K = Q.

m′ cannot possibly be a Q-leaf. #
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Proof: The bounded degree case

Theorem II (R. Chen, A.P., R. Tao, A. Tserunyan)

A degree ≤ D Borel quasi-tree G ⊆ X 2 is “canonically” quasi-isometric to a tree. In
particular, EG is treeable.

Wishful thinking: Idea of coarse points.
Fix K witnessing bottleneck criterion. Consider the set of oriented cuts

C = {A ⊆ X | A,¬A connected & diam(∂A) ≤ 2K + 2} ∪ {∅,X}.
C is a poset under subsets and closed under complements, hence is a pocset.

Lemma

Each ∅,X ̸= A ∈ C is adjacent to ≤ 3D
12K+10

other ∅,X ̸= B ∈ C.

A,B ∈ C are adjacent if they “cross” or don’t cross but there’s “no cut in between”.



Proof: The bounded degree case

Theorem II (R. Chen, A.P., R. Tao, A. Tserunyan)

A degree ≤ D Borel quasi-tree G ⊆ X 2 is “canonically” quasi-isometric to a tree. In
particular, EG is treeable.

Wishful thinking: Idea of coarse points.

Fix K witnessing bottleneck criterion. Consider the set of oriented cuts

C = {A ⊆ X | A,¬A connected & diam(∂A) ≤ 2K + 2} ∪ {∅,X}.
C is a poset under subsets and closed under complements, hence is a pocset.

Lemma

Each ∅,X ̸= A ∈ C is adjacent to ≤ 3D
12K+10

other ∅,X ̸= B ∈ C.

A,B ∈ C are adjacent if they “cross” or don’t cross but there’s “no cut in between”.



Proof: The bounded degree case

Theorem II (R. Chen, A.P., R. Tao, A. Tserunyan)

A degree ≤ D Borel quasi-tree G ⊆ X 2 is “canonically” quasi-isometric to a tree. In
particular, EG is treeable.

Wishful thinking: Idea of coarse points.
Fix K witnessing bottleneck criterion. Consider the set of oriented cuts

C = {A ⊆ X | A,¬A connected & diam(∂A) ≤ 2K + 2} ∪ {∅,X}.

C is a poset under subsets and closed under complements, hence is a pocset.

Lemma

Each ∅,X ̸= A ∈ C is adjacent to ≤ 3D
12K+10

other ∅,X ̸= B ∈ C.

A,B ∈ C are adjacent if they “cross” or don’t cross but there’s “no cut in between”.



Proof: The bounded degree case

Theorem II (R. Chen, A.P., R. Tao, A. Tserunyan)

A degree ≤ D Borel quasi-tree G ⊆ X 2 is “canonically” quasi-isometric to a tree. In
particular, EG is treeable.

Wishful thinking: Idea of coarse points.
Fix K witnessing bottleneck criterion. Consider the set of oriented cuts

C = {A ⊆ X | A,¬A connected & diam(∂A) ≤ 2K + 2} ∪ {∅,X}.
C is a poset under subsets and closed under complements, hence is a pocset.

Lemma

Each ∅,X ̸= A ∈ C is adjacent to ≤ 3D
12K+10

other ∅,X ̸= B ∈ C.

A,B ∈ C are adjacent if they “cross” or don’t cross but there’s “no cut in between”.



Proof: The bounded degree case

Theorem II (R. Chen, A.P., R. Tao, A. Tserunyan)

A degree ≤ D Borel quasi-tree G ⊆ X 2 is “canonically” quasi-isometric to a tree. In
particular, EG is treeable.

Wishful thinking: Idea of coarse points.
Fix K witnessing bottleneck criterion. Consider the set of oriented cuts

C = {A ⊆ X | A,¬A connected & diam(∂A) ≤ 2K + 2} ∪ {∅,X}.
C is a poset under subsets and closed under complements, hence is a pocset.

Lemma

Each ∅,X ̸= A ∈ C is adjacent to ≤ 3D
12K+10

other ∅,X ̸= B ∈ C.

A,B ∈ C are adjacent if they “cross” or don’t cross but there’s “no cut in between”.



Proof: The bounded degree case

We reduce G to the following graph Ĝ :

V (Ĝ ) = {U ⊂ C : U is a clopen ultrafilter}
Every such ultrafilter has a ⊆-minimal elements, which must be adjacent, hence there
is a uniform bound.

E (Ĝ ) = {(U,V ) : U,V differs at exactly one minimal element of U}
There is a uniform bound on degree, hence finite edge coloring (KST).

Further, this forms a median graph, which is the skeleton of a CAT(0) cube complex.
This gives a notion of convexity and half-planes.

Cycle cut using the finite coloring and geometry of half-planes.
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Thank you!
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