Quasi-treeable equivalence relations

Antoine Poulin

McGill
joint with: Ronnie Chen (University of Michigan), Ran Tao (McGill), Anush Tserunyan (McGill)

Setting

A group is free iff it has a Cayley graph which is a tree.

Setting

A group is free iff it has a Cayley graph which is a tree.

Theorem (classical)

A f.g. group Γ is virtually free iff it has a Cayley graph G which is a quasi-tree.
Quasi-tree \leftarrow graph quasi-isometric to a tree $\exists f: G \rightarrow T$ which

- f roughly preserves geometry,
- f is roughly surjective.

A group is free iff it has a Cayley graph which is a tree.

Theorem (classical)

A f.g. group Γ is virtually free iff it has a Cayley graph G which is a quasi-tree.
Quasi-tree \leftarrow graph quasi-isometric to a tree $\exists f: G \rightarrow T$ which

- f roughly preserves geometry,
- f is roughly surjective.

There are $M>1, K>0$ s.t.

$$
\begin{gathered}
\frac{1}{M} d_{T}(f(x), f(y))-K \leq d_{G}(x, y) \leq M d_{T}(f(x), f(y))+K, \\
d_{T}(\operatorname{im}(f), z) \leq K
\end{gathered}
$$

for all $x, y \in V(G)$ and $z \in V(T)$.

Setting

Measured and Borel dynamics: study Γ via orbit equiv. rel. E_{Γ} of its free actions.

Setting

Measured and Borel dynamics: study Γ via orbit equiv. rel. E_{Γ} of its free actions. Γ free, $\Gamma \curvearrowright X$ free $\Longrightarrow E_{\Gamma}$ treeable.

Setting

Measured and Borel dynamics: study Γ via orbit equiv. rel. E_{Γ} of its free actions.
Γ free, $\Gamma \curvearrowright X$ free $\Longrightarrow E_{\Gamma}$ treeable.
Γ virtually free, $\Gamma \curvearrowright X$ free $\Longrightarrow E_{\Gamma}$ quasi-treeable.

Setting

Measured and Borel dynamics: study Γ via orbit equiv. rel. E_{Γ} of its free actions.
Γ free, $\Gamma \curvearrowright X$ free $\Longrightarrow E_{\Gamma}$ treeable.
Γ virtually free, $\Gamma \curvearrowright X$ free $\Longrightarrow E_{\Gamma}$ quasi-treeable.
Theorem (Jackson-Kechris-Louveau 2002)
Γ virtually free, $\Gamma \curvearrowright X$ free $\Longrightarrow E_{\Gamma}$ treeable.

Setting

Measured and Borel dynamics: study Γ via orbit equiv. rel. E_{Γ} of its free actions.
Γ free, $\Gamma \curvearrowright X$ free $\Longrightarrow E_{\Gamma}$ treeable.
Γ virtually free, $\Gamma \curvearrowright X$ free $\Longrightarrow E_{\Gamma}$ quasi-treeable.

Theorem (Jackson-Kechris-Louveau 2002)

Γ virtually free, $\Gamma \curvearrowright X$ free $\Longrightarrow E_{\Gamma}$ treeable.

Question

If a CBER is quasi-treeable, must it be treeable?

Setting

Measured and Borel dynamics: study Γ via orbit equiv. rel. E_{Γ} of its free actions.
Γ free, $\Gamma \curvearrowright X$ free $\Longrightarrow E_{\Gamma}$ treeable.
Γ virtually free, $\Gamma \curvearrowright X$ free $\Longrightarrow E_{\Gamma}$ quasi-treeable.

Theorem (Jackson-Kechris-Louveau 2002)

Γ virtually free, $\Gamma \curvearrowright X$ free $\Longrightarrow E_{\Gamma}$ treeable.

Question

If a CBER is quasi-treeable, must it be treeable?
No, for bad reasons.

Setting

Measured and Borel dynamics: study Γ via orbit equiv. rel. E_{Γ} of its free actions.
Γ free, $\Gamma \curvearrowright X$ free $\Longrightarrow E_{\Gamma}$ treeable.
Γ virtually free, $\Gamma \curvearrowright X$ free $\Longrightarrow E_{\Gamma}$ quasi-treeable.

Theorem (Jackson-Kechris-Louveau 2002)

Γ virtually free, $\Gamma \curvearrowright X$ free $\Longrightarrow E_{\Gamma}$ treeable.

Better Question

If a CBER is I.f. quasi-treeable, must it be treeable?

Results

Theorem (R. Chen, A. P., R. Tao, A. Tserunyan 2023+)
Let $E \subseteq X^{2}$ be a $C B E R, G \subseteq E$ be a locally finite graphing whose each component is (abstractly) a quasi-tree.
(i) If G is one-ended, then E is hyperfinite.
(ii) If G has bounded degree, then E is treeable.

Results

Theorem (R. Chen, A. P., R. Tao, A. Tserunyan 2023+)
Let $E \subseteq X^{2}$ be a $C B E R, G \subseteq E$ be a locally finite graphing whose each component is (abstractly) a quasi-tree.
(i) If G is one-ended, then E is hyperfinite.
(ii) If G has bounded degree, then E is treeable.

Results

Theorem (R. Chen, A. P., R. Tao, A. Tserunyan 2023+)

Let $E \subseteq X^{2}$ be a CBER, $G \subseteq E$ be a locally finite graphing whose each component is (abstractly) a quasi-tree.
(i) If G is one-ended, then E is hyperfinite.
(ii) If G has bounded degree, then E is treeable.

Manning's bottleneck criterion (2005)

A graph $G \subseteq X^{2}$ is a quasi-tree iff there exists $K>0$ s.t. every $x, y \in X$ have an K-approx. midpoint m :

$$
d(x, m) \approx \frac{1}{2} d(x, y) \approx d(m, y)
$$

x, y lie in different components of $B(m, K)^{c}$.

Proof: The one-ended case

Theorem I (R. Chen, A. P., R. Tao, A. Tserunyan)

Let $G \subseteq X^{2}$ be a locally finite one-ended quasi-tree. Then G is hyperfinite.

Proof: The one-ended case

Theorem I (R. Chen, A. P., R. Tao, A. Tserunyan)

Let $G \subseteq X^{2}$ be a locally finite one-ended quasi-tree. Then G is hyperfinite.
Fix K witnessing Manning's bottleneck criterion. For $Q>0$, call $x \in X$ a Q-leaf if

$$
B(x, 2 K) \cup \text { finite components of } X \backslash B(x, 2 K) \subseteq B(x, Q)
$$

Proof: The one-ended case

Theorem I (R. Chen, A. P., R. Tao, A. Tserunyan)

Let $G \subseteq X^{2}$ be a locally finite one-ended quasi-tree. Then G is hyperfinite.
Fix K witnessing Manning's bottleneck criterion. For $Q>0$, call $x \in X$ a Q-leaf if

$$
\begin{gathered}
B(x, 2 K) \cup \text { finite components of } X \backslash B(x, 2 K) \subseteq B(x, Q) . \\
X_{Q}=\{x \in X: x \text { is a } Q \text {-leaf }\} .
\end{gathered}
$$

Proof: The one-ended case

Theorem I (R. Chen, A. P., R. Tao, A. Tserunyan)

Let $G \subseteq X^{2}$ be a locally finite one-ended quasi-tree. Then G is hyperfinite.
Fix K witnessing Manning's bottleneck criterion. For $Q>0$, call $x \in X$ a Q-leaf if

$$
\begin{gathered}
B(x, 2 K) \cup \text { finite components of } X \backslash B(x, 2 K) \subseteq B(x, Q) . \\
X_{Q}=\{x \in X: x \text { is a } Q \text {-leaf }\} .
\end{gathered}
$$

Lemma

- Every $x \in X$ is a Q-leaf for some Q.
- $X_{Q} \nearrow X$ and $E\left(G \downharpoonright X_{Q}\right) \nearrow E(G)$.
- Each connected component of X_{Q} has diameter $\leq 2 Q+4 K$.

Proof: The one-ended case

- Let x, y be Q-leaves in the same component with $d(x, y)>2 Q+4 K$.

Proof: The one-ended case

- Let x, y be Q-leaves in the same component with $d(x, y)>2 Q+4 K$.
- Let m be an K-approx. midpoint.

Proof: The one-ended case

- Let x, y be Q-leaves in the same component with $d(x, y)>2 Q+4 K$.
- Let m be an K-approx. midpoint.
- Let m^{\prime} be another Q-leaf in the same component with $d\left(m, m^{\prime}\right) \leq K$. This exists since there is a path of Q-leaves linking x, y.
- Let x, y be Q-leaves in the same component with $d(x, y)>2 Q+4 K$.
- Let m be an K-approx. midpoint.
- Let m^{\prime} be another Q-leaf in the same component with $d\left(m, m^{\prime}\right) \leq K$. This exists since there is a path of Q-leaves linking x, y.
- Then m^{\prime} is a $2 K$-approx. midpoint.
- Let x, y be Q-leaves in the same component with $d(x, y)>2 Q+4 K$.
- Let m be an K-approx. midpoint.
- Let m^{\prime} be another Q-leaf in the same component with $d\left(m, m^{\prime}\right) \leq K$. This exists since there is a path of Q-leaves linking x, y.
- Then m^{\prime} is a $2 K$-approx. midpoint.
- WLOG x is in a finite component of $B\left(m^{\prime}, 2 K\right)^{c}$.
- Let x, y be Q-leaves in the same component with $d(x, y)>2 Q+4 K$.
- Let m be an K-approx. midpoint.
- Let m^{\prime} be another Q-leaf in the same component with $d\left(m, m^{\prime}\right) \leq K$. This exists since there is a path of Q-leaves linking x, y.
- Then m^{\prime} is a $2 K$-approx. midpoint.
- WLOG x is in a finite component of $B\left(m^{\prime}, 2 K\right)^{c}$.
- But $d\left(x, m^{\prime}\right) \geq \frac{1}{2} d(x, y)-2 K>\frac{1}{2}(2 Q+4 K)-2 K=Q$.
- Let x, y be Q-leaves in the same component with $d(x, y)>2 Q+4 K$.
- Let m be an K-approx. midpoint.
- Let m^{\prime} be another Q-leaf in the same component with $d\left(m, m^{\prime}\right) \leq K$. This exists since there is a path of Q-leaves linking x, y.
- Then m^{\prime} is a $2 K$-approx. midpoint.
- WLOG x is in a finite component of $B\left(m^{\prime}, 2 K\right)^{c}$.
- But $d\left(x, m^{\prime}\right) \geq \frac{1}{2} d(x, y)-2 K>\frac{1}{2}(2 Q+4 K)-2 K=Q$.
- m^{\prime} cannot possibly be a Q-leaf. \#

Proof: The bounded degree case

Theorem II (R. Chen, A.P., R. Tao, A. Tserunyan)
A degree $\leq D$ Borel quasi-tree $G \subseteq X^{2}$ is "canonically" quasi-isometric to a tree. In particular, E_{G} is treeable.

Proof: The bounded degree case

```
Theorem II (R. Chen, A.P., R. Tao, A. Tserunyan)
A degree \(\leq D\) Borel quasi-tree \(G \subseteq X^{2}\) is "canonically" quasi-isometric to a tree. In particular, \(E_{G}\) is treeable.
```

Wishful thinking: Idea of coarse points.

Proof: The bounded degree case

Theorem II (R. Chen, A.P., R. Tao, A. Tserunyan)

A degree $\leq D$ Borel quasi-tree $G \subseteq X^{2}$ is "canonically" quasi-isometric to a tree. In particular, E_{G} is treeable.

Wishful thinking: Idea of coarse points.
Fix K witnessing bottleneck criterion. Consider the set of oriented cuts

$$
\mathcal{C}=\{A \subseteq X \mid A, \neg A \text { connected } \& \operatorname{diam}(\partial A) \leq 2 K+2\} \cup\{\varnothing, X\} .
$$

Proof: The bounded degree case

Theorem II (R. Chen, A.P., R. Tao, A. Tserunyan)

A degree $\leq D$ Borel quasi-tree $G \subseteq X^{2}$ is "canonically" quasi-isometric to a tree. In particular, E_{G} is treeable.

Wishful thinking: Idea of coarse points. Fix K witnessing bottleneck criterion. Consider the set of oriented cuts

$$
\mathcal{C}=\{A \subseteq X \mid A, \neg A \text { connected } \& \operatorname{diam}(\partial A) \leq 2 K+2\} \cup\{\varnothing, X\} .
$$

\mathcal{C} is a poset under subsets and closed under complements, hence is a pocset.

Proof: The bounded degree case

Theorem II (R. Chen, A.P., R. Tao, A. Tserunyan)

A degree $\leq D$ Borel quasi-tree $G \subseteq X^{2}$ is "canonically" quasi-isometric to a tree. In particular, E_{G} is treeable.

Wishful thinking: Idea of coarse points.
Fix K witnessing bottleneck criterion. Consider the set of oriented cuts

$$
\mathcal{C}=\{A \subseteq X \mid A, \neg A \text { connected } \& \operatorname{diam}(\partial A) \leq 2 K+2\} \cup\{\varnothing, X\} .
$$

\mathcal{C} is a poset under subsets and closed under complements, hence is a pocset.

Lemma

Each $\varnothing, X \neq A \in \mathcal{C}$ is adjacent to $\leq 3^{D^{12 \kappa+10}}$ other $\varnothing, X \neq B \in \mathcal{C}$.
$A, B \in \mathcal{C}$ are adjacent if they "cross" or don't cross but there's "no cut in between".

Proof: The bounded degree case

We reduce G to the following graph \widehat{G} :

$$
V(\widehat{G})=\{U \subset \mathcal{C}: U \text { is a clopen ultrafilter }\}
$$

Every such ultrafilter has a \subseteq-minimal elements, which must be adjacent, hence there is a uniform bound.

Proof: The bounded degree case

We reduce G to the following graph \widehat{G} :

$$
V(\widehat{G})=\{U \subset \mathcal{C}: U \text { is a clopen ultrafilter }\}
$$

Every such ultrafilter has a \subseteq-minimal elements, which must be adjacent, hence there is a uniform bound.

$$
E(\widehat{G})=\{(U, V): U, V \text { differs at exactly one minimal element of } U\}
$$

Proof: The bounded degree case

We reduce G to the following graph \widehat{G} :

$$
V(\widehat{G})=\{U \subset \mathcal{C}: U \text { is a clopen ultrafilter }\}
$$

Every such ultrafilter has a \subseteq-minimal elements, which must be adjacent, hence there is a uniform bound.

$$
E(\widehat{G})=\{(U, V): U, V \text { differs at exactly one minimal element of } U\}
$$

There is a uniform bound on degree, hence finite edge coloring (KST).

We reduce G to the following graph \widehat{G} :

$$
V(\widehat{G})=\{U \subset \mathcal{C}: U \text { is a clopen ultrafilter }\}
$$

Every such ultrafilter has a \subseteq-minimal elements, which must be adjacent, hence there is a uniform bound.

$$
E(\widehat{G})=\{(U, V): U, V \text { differs at exactly one minimal element of } U\}
$$

There is a uniform bound on degree, hence finite edge coloring (KST).
Further, this forms a median graph, which is the skeleton of a CAT(0) cube complex. This gives a notion of convexity and half-planes.

We reduce G to the following graph \widehat{G} :

$$
V(\widehat{G})=\{U \subset \mathcal{C}: U \text { is a clopen ultrafilter }\}
$$

Every such ultrafilter has a \subseteq-minimal elements, which must be adjacent, hence there is a uniform bound.

$$
E(\widehat{G})=\{(U, V): U, V \text { differs at exactly one minimal element of } U\}
$$

There is a uniform bound on degree, hence finite edge coloring (KST).
Further, this forms a median graph, which is the skeleton of a CAT(0) cube complex. This gives a notion of convexity and half-planes.
Cycle cut using the finite coloring and geometry of half-planes.

Thank you!

