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There are M > 1, K > 0 s.t.

for all x,y € V(G) and z € V(T).
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Theorem (Jackson—Kechris—Louveau 2002)

I" virtually free, I ~ X free = Er treeable.

If a CBER is quasi-treeable, must it be treeable?

No, for bad reasons.




Measured and Borel dynamics: study I via orbit equiv. rel. Er of its free actions.
[ free,  ~ X free —> Er treeable.

I virtually free, I ~ X free = Er quasi-treeable.

Theorem (Jackson—Kechris—Louveau 2002)

I" virtually free, I ~ X free = Er treeable.

Better Question
If a CBER is I.f. quasi-treeable, must it be treeable?
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Theorem (R. Chen, A. P., R. Tao, A. Tserunyan 2023+)

Let E C X? be a CBER, G C E be a locally finite graphing whose each component is
(abstractly) a quasi-tree.

(i) If G is one-ended, then E is hyperfinite.
(i) If G has bounded degree, then E is treeable.

Manning's bottleneck criterion (2005)

A graph G C X? is a quasi-tree iff there exists K > 0 s.t. every x,y € X have an
K-approx. midpoint m:

d(x, m) ~ %d(x,y) ~ d(m,y),
x, y lie in different components of B(m, K)°.
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Theorem | (R. Chen, A. P., R. Tao, A. Tserunyan)

Let G C X? be a locally finite one-ended quasi-tree. Then G is hyperfinite.

Fix K witnessing Manning's bottleneck criterion. For @ > 0, call x € X a Q-leaf if
B(x,2K) U finite components of X \ B(x,2K) C B(x, Q).
Xo={x€ X :xisa Q-leaf}.

e Every x € X is a Q-leaf for some Q.
e Xo /X and E(G | Xg) / E(G).
o Each connected component of Xg has diameter < 2Q + 4K.
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Proof: The one-ended case

o Let x,y be Q-leaves in the same component with d(x,y) > 2Q + 4K.
@ Let m be an K-approx. midpoint.

o Let m’' be another Q-leaf in the same component with d(m, m") < K. This exists
since there is a path of Q-leaves linking x, y.

Then m’ is a 2K-approx. midpoint.

e WLOG x is in a finite component of B(m’,2K)°.
o But d(x,m') > Ld(x,y) —2K > 1(2Q +4K) - 2K = Q.

e m’ cannot possibly be a Q-leaf. #
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Theorem Il (R. Chen, A.P., R. Tao, A. Tserunyan)

A degree < D Borel quasi-tree G C X? is “canonically” quasi-isometric to a tree. In
particular, E¢ is treeable.

Wishful thinking: ldea of coarse points.
Fix K witnessing bottleneck criterion. Consider the set of oriented cuts

C={AC X | A, —-A connected & diam(0A) < 2K + 2} U{@, X}.

C is a poset under subsets and closed under complements, hence is a pocset.

Each @,X # A € C is adjacent to < 30 other @, X + B € C.

A, B € C are adjacent if they “cross” or don't cross but there's “no cut in between”.
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Proof: The bounded degree case

We reduce G to the following graph G:
V(G) ={U CC: Uis a clopen ultrafilter}

Every such ultrafilter has a C-minimal elements, which must be adjacent, hence there
is a uniform bound.

E(G) = {(U, V) : U,V differs at exactly one minimal element of U}
There is a uniform bound on degree, hence finite edge coloring (KST).

Further, this forms a median graph, which is the skeleton of a CAT(0) cube complex.
This gives a notion of convexity and half-planes.

Cycle cut using the finite coloring and geometry of half-planes.



Thank you!
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