Quasi-treeable equivalence relations

Antoine Poulin

McGill University

joint with: Ronnie Chen (University of Michigan), Ran Tao (Carnegie Melon University), Anush Tserunyan (McGill University) Interested in studying classification problems and invariants.

Throughout, X is a standard Borel space, such as the interval [0,1] or the Cantor space 2^{N} .

Countable Borel equivalence relations

A countable Borel equivalence relation (CBER) is an equivalence relation E which:

- is a Borel subset of X^2 .
- has countable classes.

Background - Examples of CBERs

() The identity relation on $X =_X$ is a countable Borel equivalence relation.

② Eventual equality and tail equivalence on sequences $(x_i) \in S^{\mathbb{N}}$:

$$(x_i) E_0(y_j) \longleftrightarrow \exists N, \forall n \geq N, x_n = y_n$$

$$(x_i) E_t (y_j) \longleftrightarrow \exists N, m, \forall n \ge N, x_n = y_{n+m}$$

• Orbit equivalence relations of Borel actions of countable groups $\Gamma \curvearrowright X$: $x E(\Gamma \curvearrowright X) y \longleftrightarrow \exists \gamma \in \Gamma, \gamma x = y.$

Theorem [Feldman-Moore, '77]

All countable Borel equivalence relations arise as orbit equivalence relations.

Background - Reductions

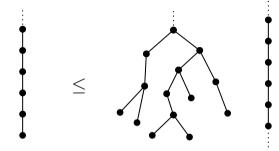
Reductions

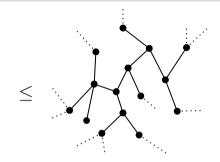
If (X, E), (Y, F) are two CBERs, a Borel function $f : X \to Y$ such that $x E y \longleftrightarrow f(x) F f(y)$ is called a **reduction**. We write $E \leq F$.

$$=_X < E_0, E_t, E(\mathbf{Z} \frown X) < E\left(F_2 \frown 2_{free}^{F^2}
ight) < E\left(SL_3(\mathbf{Z}) \frown 2_{free}^{SL_3(\mathbf{Z})}
ight)$$

smooth < hyperfinite < treeable < (non-treeable)</pre>

Structurability of CBERs





SMOOTHHYPERFINITENatural line (or finite)One or two ended trees

TREEABILITY Arbitrary trees

Background - Quasi-trees

Quasi-tree \leftarrow graph quasi-isometric to a tree $\exists f : G \rightarrow T$ which

- f roughly preserves distances,
- f is roughly surjective.

There are M > 1, K > 0 s.t. $\frac{1}{M}d_T(f(x), f(y)) - K \leq d_G(x, y) \leq Md_T(f(x), f(y)) + K,$ $d_T(\operatorname{im}(f), z) \leq K.$ for all $x, y \in V(G)$ and $z \in V(T)$.

Motivation - Dynamics

 Γ free, $\Gamma \frown X$ free $\implies E(\Gamma \frown X)$ treeable.

 Γ virtually free, $\Gamma \curvearrowright X$ free $\implies E(\Gamma \curvearrowright X)$ quasi-treeable, i.e there exists some graphing whose connected components are quasi-trees.

Theorem (Follows from Jackson–Kechris–Louveau '02)

 Γ virtually free, $\Gamma \curvearrowright X$ free $\implies E(\Gamma \curvearrowright X)$ treeable.

Better Question

If a CBER is I.f. quasi-treeable, must it be treeable?

No, for bad reasons. Requires l.f.

Theorem (R. Chen, A. P., R. Tao, A. Tserunyan 2023+)

Let $E \subseteq X^2$ be a CBER, $G \subseteq E$ be a locally finite graphing whose each component is a quasi-tree.

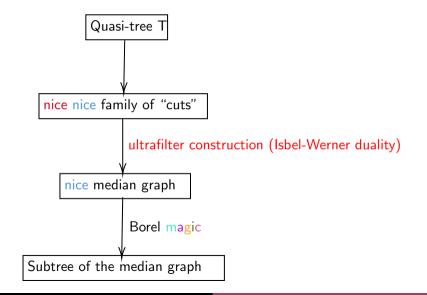
(i) G is treeable.

(ii) If G is one-ended, then E is hyperfinite.

Theorem (R. Chen, A. P., R. Tao, A. Tserunyan 2023+)

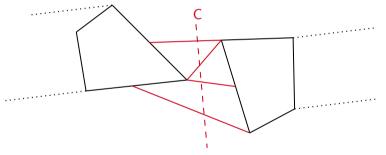
Let $E \subseteq X^2$ be a CBER, $G \subseteq E$ be a locally finite graphing whose each component is a quasi-tree. If G has a global bound on degree, there is a reduction to a Borel tree (Y, T) which is a quasi-isometry (class-wise).

Overview of the proof



Given a countable graph G, the set of (connected) cuts of G is

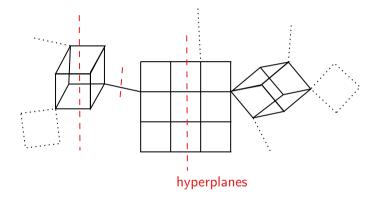
 $C(G) := \{ C \Subset E(G) : G - C \text{ has } 2 \text{ connected components} \}$



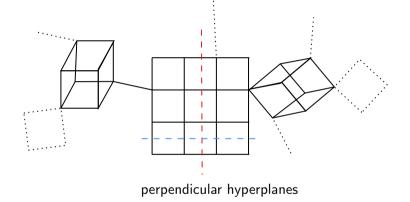
The two components of G - C are called the **sides** of *C*.

Median graphs

A median graph can always be represented as 1-skeleton of CAT(0) cube complexes.



Perpendicular hyperplanes



Hyperplanes are **perpendicular** if all pair of sides intersect.

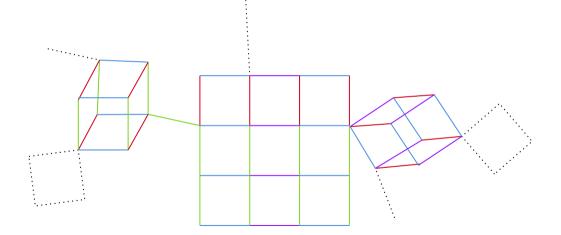
$\mathcal{C}_{R}(T)$	Median graph $\mathcal{O}_R(\mathcal{T})$
Ultrafilter of cuts	Vertices
Ultrafilters differing on a single cut	edge
Cuts	Hyperplanes
Crossing Cuts	Perpendicular hyperplanes
Finite number of cuts in a finite window	Hyperplanes contain finitely many edges
Ends are separated	Finite-to-1 map $ \mathcal{T} o \mathcal{O}_R(\mathcal{T}) $

Lemma (Follows from Kechris-Miller '04)

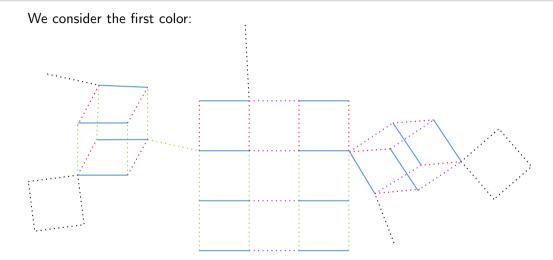
There exists a countable coloring of hyperplanes such that if two hyperplanes are perpendicular, they have different color.

Colorings

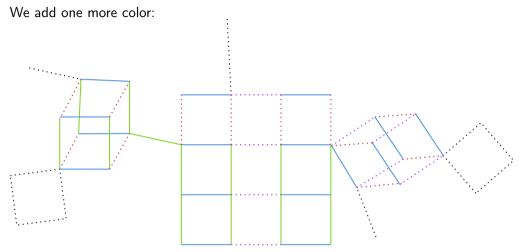
We have a coloring now:



Building the tree: first color



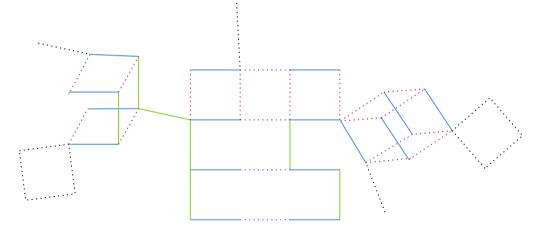
Adding more colors



But we don't have a tree anymore!

Cycle cutting

For every hyperplane, we keep only the minimal amount of edges which preserves connectedness.



Iterative procedure

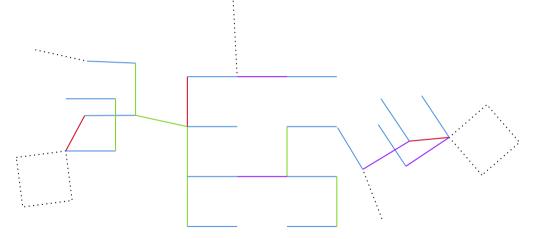
Then we go again! ********

Iterative procedure

Then we go again! ********

After 4 colors

Skipping 2 steps:



Theorem (R. Chen, A. P., R. Tao, A. Tserunyan 2023+)

If \mathcal{O} is a median graph with a countable coloring of hyperplanes such that perpendicular hyperplanes have different colors, there is a "canonical" subtree $\widehat{T} \subset \mathcal{O}$.

Can be generalized to other "tree-like" notions for graph:

Theorem (R. Chen, A. P., R. Tao, A. Tserunyan 2023+)

If a CBER E admits a locally finite graphing with components quasi-trees or of bounded tree-width, then E is treeable.

Thank you!