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ELASTICITY OF FREE TYPE III ACTIONS OF FREE GROUPS

ANTOINE POULIN

ABSTRACT. We prove that measure-class-preserving non-amenable treeable equivalence re-

lations of type III, meaning not preserving any equivalent σ-finite measure, are induced by

free actions of non-abelian free groups of any given number of generators, including infin-

itely generated free groups, with the additional property that no ends of the induced Schreier

graph are vanishing. This is done using a characterization of type III due to Hopf for trans-

formations and Dang-Ngoc-Nghiem in general. This highlights the difference between the

type III setting and the measure-preserving setting.

1. INTRODUCTION

Measured group theory is the study of groups through their actions on measure spaces.

Much information about a probability measure-preserving (pmp) action is recoverable solely

its orbit equivalence relation. Two pmp actions Γ y (X, µ) and ∆ y (Y, ν) of countable

groups on standard probability spaces are said to be orbit equivalent (OE) if there is a

measure isomorphism from (X, µ) to (Y, ν) preserving the orbit equivalence relations. A

result of Dye ([Dye59]) says that any two ergodic pmp Z-actions are OE, and a subsequent

theorem of Ornstein and Weiss ([OW80]) states that every ergodic pmp action of an amenable

group is OE to an ergodic pmp Z-action.

Cost is an OE-invariant of pmp equivalence relations defined as half the infimum over

graphings of their expected degrees, where a graphing of an equivalence relation is a Borel

graph whose connected components are exactly the equivalence classes. It was introduced

by Levitt in [Lev95] and studied extensively by Gaboriau in [Gab98, Gab00] and subsequent

works. A question of Levitt in [Lev95] was whether cost is a non-trivial OE-invariant for

free actions of free groups. Gaboriau answered this in [Gab98, Gab00], in fact proving the

stronger result that free groups of differing ranks are not OE. The main result of [Gab98,

Gab00] is that cost is attained by a treeing, an acyclic Borel graphing on X , if it exists. This

implies that the cost of any free pmp Fd-action is exactly d. A converse was also given by

Hjorth in [Hjo06]. Using edge sliding technique, he shows that a graphing of cost greater

than d can be regularized so that it contains d transformations. Combined with the work of

Gaboriau in [Gab00], one gets the corollary that if an ergodic pmp relation admits a treeing

and has cost d, there is an ergodic pmp Fd-action OE to it.

It directly follows from [JKL02, Theorem 3.17] that given a compressible treeable count-

able Borel equivalence relation, there is a free action of Fd generating this equivalence rela-

tion, for any d ∈ {2, ...,∞}. By a theorem of Nadkarni [Nad90], compressibility is equiva-

lent to the inexistence of invariant probability measures.

A recent program is to transfer measurable graph combinatorics results from the pmp set-

ting to the measure-class-preserving (mcp) setting, where the equivalence relation may not

preserve the probability measure, but preserves null sets. This was initiated in [Tse22], where
1
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Tserunyan constructs hyperfinite ergodic subgraphs of ergodic mcp graphs. Since then, many

results have been generalized to the mcp setting. For example, in [BPZ24], Bowen, Zom-

back and the author show the existence of one-ended spanning treeings in measure-class-

preserving actions of one-ended amenable group. A characterization of amenability for mcp

acyclic graphs has recently been given by Tserunyan and Tucker-Drob in [TTD24], gener-

alizing the characterization of Adams in [Ada90]. This states that an mcp acyclic graph is

amenable if and only if a.e component has at most 2 non-vanishing ends. This has then been

successfully applied in [CTT23] by Chen, Terlov and Tserunyan to prove the existence of

non-amenable subforests of locally finite graphs with infinitely many non-vanishing ends,

akin to a result due to Gaboriau and Ghys (See [Ghy95] and [Gab00, IV.24]) in the pmp

setting.

In light of [TTD24], it is clear that non-vanishing of ends is a non-triviality condition.

Even though it follows from [JKL02] that compressible relations can be generated by free

actions of non-abelian free groups of any rank, it is a priori unclear whether the ends of such

actions can be made non-vanishing when equipped with an invariant measure class. Our

main result is the following ergodic-theoretic strengthening in the type III setting, where the

measure class does not contain an invariant (σ-finite) measure.

Theorem 1.1. Let (X, µ,G) be an ergodic type III non-amenable locally countable Borel

acyclic graph and d ∈ {2, . . . ,∞}. Then there is a free Borel action of Fd on X such that

EG = EFd
a.e. and a.e the components of the Schreier graph does not have vanishing ends.

This is Theorem 4.1 in the text. This answers a question of D. Gaboriau, A. Tserunyan

and R. Tucker-Drob. The techniques are inspired by Hjorth’s edge sliding argument, further

developed in [MT18]. Conversely, see Example 4.3 for a compressible graph with an in-

variant infinite measure which does not admit F∞ graphing without vanishing ends for any

equivalent probability measures.

Informally, this result also suggests that if a form of cost exists for measure-class-preserving

actions, it will be very different than in the pmp setting (see also Remark 3.2). These results

exhibit the fundamental differences between the type III and the pmp setting.

Despite the seemingly negative overtone of our result to the tractability of the type III

setting, in upcoming work with D. Gaboriau, A. Tserunyan, R. Tucker-Drob and K. Wróbel

on the orbit equivalence classification of Baumslag–Solitar groups, we crucially use the type

III setting to solve a problem in the pmp setting, in particular using the results proven here.

Acknowledgements. The author would like to thank Damien Gaboriau, Alexander Kechris,

Sam Mellick, Anush Tserunyan, Robin Tucker-Drob and Konrad Wróbel for helpful discus-

sions. Special thanks go to Damien Gaboriau and Anush Tserunyan for their guidance and

support.

2. PRELIMINARIES ON MEASURED COMBINATORICS

In this section, we establish some preliminaries on measured equivalence relations and

Borel graphs. The material is standard, with references such as [KM04] and [Tse22].

A standard measure space (X, µ) is a Polish space X equipped with a σ-finite Borel

measure µ on X . All measures we consider will be σ-finite and Borel, i.e supported on the
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Borel σ-algebra. Equality of sets and functions is always considered mod null. Two σ-finite

Borel measures on X are equivalent, denoted µ′ ∼ µ, if for all Borel subset A ⊂ X ,

µ′(A) = 0⇐⇒ µ(A) = 0.

In this case, there exists an essentially unique Radon-Nikodym derivative dµ′

dµ
: X → (0,∞)

satisfying
∫

X

f(x) dµ′(x) =

∫

X

f(x) ·
dµ′

dµ
(x) dµ(x),

for all Borel function f : X → [0,∞].
A countable Borel equivalence relation on a standard measure space (X, µ) is an equiv-

alence relation E ⊂ X2 which is Borel as a subset of X2 and whose equivalence classes are

all countable. We will always abbreviate “countable Borel equivalence relation” to CBER.

The E-saturation of a subset A ⊂ X is

[A]E = {x ∈ X : ∃y ∈ A, x E y} .

We write [x]E for [{x}]E , the equivalence class of x. A subset A ⊂ X is a complete section

if [A]E is co-null. We say E is ergodic if whenever A ⊂ X is non-null, A is a complete

section. We further say that it is properly ergodic if µ is not supported on a single E-class.

We define two measures on E: for A ⊂ E, let

νl(A) =

∫

X

∣

∣A ∩ s−1{x}
∣

∣ dµ

νr(A) =

∫

X

∣

∣A ∩ t−1{x}
∣

∣ dµ

where s, t : X2 → X denote the two projections. We say that E is measure-preserving if

νl = νr and say that E is measure-class-preserving if νl ∼ νr. We abbreviate these as mp

and mcp, respectively.

Remark 2.1. In an mcp CBER (X, µ,E), the measure class of νl and νr allows us to speak of

non-null sets of edges. For ergodic CBERs, proper ergodicity is equivalent to this measure

class being atomless.

Definition 2.2. Let (X, µ,E) be an mcp CBER. The Radon-Nikodym cocycle is

w(y, x) :=
dνl
dνr

(y, x).

It satisfies the cocycle identity

w(z, y) ·w(y, x) = w(z, x).

Informally, we think of this cocycle as giving a relative weight between two points of the

same class. In particular, a measure is invariant if and only if its Radon-Nikodym cocycle is

equivalently 1. This is formalized through the mass-transport principle [Tse22, Lemma 5.2].

For an mcp CBER (X, µ,E), the full pseudogroup associated to E, denoted [[E]], is the

set of Borel bijections φ : A→ B with Borel domain and image satisfying φ(x) E x for all

x ∈ X . We identify elements of [[E]] if they agree mod null.

If G is any locally countable Borel graph on X , denote EG for the CBER induced by G.

For a locally countable Borel graph G on X and a point x ∈ X , we write [x]G for [x]EG
.
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Similarly, we say that G is ergodic if EG is, and similarly for other notions. If H ≤ G is a

subgraph, we say it is a strict subgraph and write H < G if EH 6= EG on a positive measure

set.

An end of the connected component of an acyclic graph is a class of geodesics (x0, x1, ...)
mod tail equivalence. Given an acyclic, locally countable Borel graph G on X , and (x, y) ∈
G a directed edge, denote N(x,y) = {z ∈ [x]G : dG(y, z) < dG(x, z)}, where dG is the graph

distance. Say that an end represented by a geodesic (x0, x1, ...) is vanishing if

lim sup
y∈N(xi,xi+1)

w(y, x0) −→ 0.

It is straightforward to check that an end vanishing does not depend on the chosen repre-

sentative. See [TTD24] for a more complete investigation of vanishing and non-vanishing

ends. Of note, an acyclic locally countable Borel graph on a standard probability space is

smooth, i.e admits a Borel selection of one vertex per components on a conull set, if and only

if every end of a.e every components vanishes.

The fact that every standard Borel space admits a Borel linear ordering implies:

Lemma 2.3. Let (X, µ) be a standard measure space and G a Borel graph on X . Then,

there is a Borel orientation
−→
G ⊂ G.

Here, an orientation means a unique, coherent choice of (x, y) or (y, x) for every (x, y) ∈
G.

2.1. Type of a measured equivalence relation. In this section, we recall the classification

of mcp CBERs in types and establish some relevant properties. The material here is less

standard, but still folklore. It is mainly based on work of W. Krieger, for example [Kri69a,

Kri69b]. See [HO81] and [KW91] for references.

Definition 2.4. An ergodic mcp CBER (X, µ,E) is:

• type I if µ is atomic. Equivalently, if it is not properly ergodic.

• type II if there is a σ-finite µ′ ∼ µ preserved by E and µ is non-atomic.

• type III if there is no σ-finite µ′ ∼ µ preserved by E.

Proposition 2.5. A properly ergodic mcp CBER (X, µ,E) is type II if and only if its Radon-

Nikodym cocycle is a coboundary, i.e there is a Borel function w : X → (0,∞) for which

w(y) = w(y, x) · w(x).

Sketch of proof. Notice that when µ′ ∼ µ, the Radon-Nikodym cocycles satisfy

wµ′(y, x) =
dµ

dµ′
(x) ·wµ(y, x) ·

dµ′

dµ
(y).

Consider the function w as the Radon-Nikodym derivative with respect to some preserved

µ′ ∼ µ, i.e w(x) = dµ
dµ′

(x). �

In terms of the informal interpretation of the cocycle as a relative weight function, Propo-

sition 2.5 states that a CBER is type II if its Radon-Nikodym cocycle is derived from an

absolute weight function.
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Corollary 2.6. Type II and type III are preserved under taking complete sections: If (X, µ,E)
is a properly ergodic mcp type II (resp. type III) CBER and A ⊂ X , then the restriction

(A,E|A, µ|A) is also type II (resp. type III).

Sketch of proof. Restrict or extend w as in Proposition 2.5. To extend, notice that if x 6∈ A,

there is a unique wx such that wx ·w(a, x) = w(a), for all a ∈ [x]E ∩ A. �

If (X, µ,E) is an mcp CBER, x ∈ X and B ⊂ [x]E , write w(B, x) = {w(b, x) : b ∈ B}.

Corollary 2.7. Let (X, µ,E) be a properly ergodic CBER. Then E is type III if and only if

for all A ⊂ X non-null and for all x ∈ X , the values of the cocycle w([x]E ∩ A, x) are

unbounded above and below (in (0,∞)).

Proof. (=⇒) Suppose first E is type III. By Corollary 2.6, it suffices to show that the cocycle

is unbounded on A = X . Suppose towards a contradiction that for all x ∈ X ,

1

w(x)
:= inf {w(z, x) : z ∈ [x]E} > 0.

Notice that if y E x,

1

w(x)
= inf {w(z, x) : z ∈ [x]E}

= inf {w(z, y) ·w(y, x) : z ∈ [x]E}

= w(y, x) · inf {w(z, y) : z ∈ [x]E}

= w(y, x) ·
1

w(y)
,

as required for Proposition 2.5, contradicting that E type III. Similarly, use sup if the cocycle

is bounded above.

(⇐=) Suppose now that E is type II and let w as in Proposition 2.5. Let R be large enough

so that

A = {x ∈ X : w(x) ∈ (R−1, R)}

is non-null. Then, for x, y ∈ A with x E y,

w(y, x) =
w(x)

w(y)
∈ (R−2, R2).

Thus, on A the cocycle is bounded above and below. �

The following characterisation of type III is the key tool in our result. It follows from

[Hop32] for hyperfinite CBER and [DNN73] for general CBER.

Proposition 2.8. Let (X, µ,E) be a properly ergodic type III CBER. Let A,B ⊂ X Borel

non-null sets. Then there exists φ ∈ [[E]] with dom(φ) = A, im(φ) = B.

3. SLIDING EDGES ALONG A TYPE III SUBGRAPH

Lemma 3.1. Let (X, µ,E) be an ergodic type III CBER and F ⊂ E an ergodic type III

subrelation. Let A ⊂ E − ∆ be a Borel non-null collection of directed edges and A ⊂ X
a Borel non-null subset of vertices. Then there is a Borel bijection φ : A → A such that

φ(e) F s(e) for all e ∈ A.
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Proof. Consider the CBER (E, νl, F
(2)) where

e F (2) e′ ←→ s(e) F s(e′).

Embedding X as the diagonal ∆ gives rise to an isomorphism (∆, νl, F
(2)) ∼= (X, µ, F ).

Since (X, µ, F ) is type III, so is (E, νl, F
(2)), by Corollary 2.6.

Apply Proposition 2.8 to (E, νl, F
(2)), A and A, identified with A× A. �

Remark 3.2. Another corollary of Proposition 2.8 is that every ergodic type III CBER is

isomorphic to its restriction on every positive measure subset A ⊂ X . Here, an isomorphism

between two mcp CBERs (X, µ,E) and (Y, ν, F ) is a Borel bijection f : X → Y preserving

the measure class for which

x E y ←→ f(x) F f(y).

In particular, any isomorphism invariant Ω(·) ∈ [0,∞] of mcp CBERs that scales naturally,

i.e,

Ω(E, µ) = µ(A) · Ω

(

E|A,
µ|A
µ(A)

)

(similarly to cost(E)− 1 or the first ℓ2-Betti number in the pmp context), will be either 0 or

∞.

Theorem 3.3. Let (X, µ,G) be an ergodic type III directed Borel graph and H < G be an

ergodic type III Borel strict subgraph. Let gi, go : X → N ∪ {∞} be Borel maps such that

for all x ∈ X:

di(x) ≥ indegH(x)

do(x) ≥ outdegH(x)

and each inequality is strict on a positive measure set. Then there exists a Borel graph

G′ > H satisfying

• G′ has the same connected components as G: EG = EG′ a.e.

• The in-degree of G′ is exactly di : indegG′ ≡ di.
• The out-degree of G′ is exactly do : outdegG′ ≡ do.

Furthermore, if G is acyclic, then G′ can be chosen to be acyclic.

Proof. Without loss of generality, suppose that for all (x, y) ∈ G−H , then (x, y) 6∈ EH and

there are no x′ ∈ [x]H or y′ ∈ [y]H with (x′, y), (y′, x) ∈ G−H . This is done by removing

edges from G, which can be done in a Borel way using the Luzin-Novikov theorem.

We first start by sliding the endpoints of edges to ensure the in-degree condition is satisfied.

Consider the essential supremum S = supµ (di − indegH) ∈ {1, 2, ...,∞}. First, let
−−−−→
G−H

be an orientation of G−H as in Lemma 2.3. Take a partition

−−−−→
G−H = A1 ⊔ · · · ⊔ AS if S ∈ N,
−−−−→
G−H = A1 ⊔ · · · ⊔ Ak ⊔ . . . if S =∞,

into non-null sets of oriented edges. Apply Lemma 3.1 repeatedly with Ak and

Ak = {x ∈ X : di(x) ≥ indegH(x) + k}
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to find a Borel bijection φk : Ak → Ak such that φk(e) EH s(e) for all e ∈ A. Let

G′′ = H ⊔
S
⊔

k=1

{(φk(e), t(e)) : e ∈ Ak}

The union is disjoint by our hypothesis, since there can be at most one edge of G−H between

the second coordinate t(e) and the H-class [s(e)]H of the first coordinate. This graph still

has the same connected components as G.

We have that

indegG′′(x) = indegH(x) + #{k : x ∈ Ak}

= indegH(x) + max{k : x ∈ Ak}

= indegH(x) + di(x)− indegH(x)

= di(x).

Reversing the orientation
−−−−−→
G′′ −H and replacing di with do, we repeat the argument and also

obtain the desired equality for outdegrees.

For the last point on acyclic graphs, notice given that G is acyclic, the quotient tree

G/H is left unchanged by the edge slides above, and the number of edges between two

H-components (0 or 1 in the acyclic case) does not change either. �

Remark 3.4. Ergodicity of G and H is not required, nor is H required to be relatively ergodic

in G. One could replace them by asking that both inequalities be strict on H-complete

sections instead.

4. ANTIRIGIDITY OF TREES IN TYPE III COMBINATORICS

Theorem 4.1. Let (X, µ,G) be an ergodic type III non-amenable locally countable Borel

acyclic graph and d ∈ {2, . . . ,∞}. Then there is a free action of Fd on X such that EG =
EFd

. Further, the Schreier graph of this action does not have vanishing ends.

Proof. By [Tse22, Theorem 1.3], find an amenable ergodic subforest H < G. The inclusion

is strict since G is non-amenable. If H is type III, we can skip further down the proof, hence

suppose it is type II. Without loss of generality, assume that µ is preserved by H .

For α > 0, consider the set

D′ = {(y, x) ∈ G−H : w(y, x) ∈ (α,∞)} .

Let ε be small enough so that this set is non-null. Using [KM04, Lemma 7.3] and proper

ergodicity, take a non-null subset D ⊂ D′ such that:

• for e, e′ ∈ D, their endpoints do not overlap.

• (G−H)−D is non-null.

Thus, H ′ = H ⊔ D < G is a strict subforest of G. We now show that H ′ is type III.

Let A ⊂ X be a complete section and x ∈ A. Let M > 0 be arbitrarily large and let

n ≥ lnM
ε

. Inductively find a path (x = x0, y0, x1, y1, ..., xn−1, yn−1, xn) in H ′ with xi EH yi
and (yi−1, xi) ∈ D with w(xi, yi−1) > eε. This path always exists by ergodicity of H ,

ensuring that there is always a lighter end of an edge of D in [xi]H . Indeed, the path of
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lighter endpoint of edges in D being of positive measure, it must intersect every H-class,

since H is ergodic.

Then,

w(xn, x0) = w(y0, x0) ·w(x1, y0) . . .w(xn, yn−1)

> 1 · eε . . . eε = enε > M.

Since H is ergodic, there exists x′ ∈ [xn]H ∩ A. Therefore, w is unbounded above on A, as

w(x′, x) > M ·w(x′, xn) = M . A similar argument shows unboundedness below. Thus, by

Corollary 2.7, H ′ is type III.

Without losing generality (since we only care about EG), we can assume H is generated

by a single bijection TH on X . We then have a type III subforest H ′ < G with the property

that degH′(x) ≤ 3 for all x ∈ X .

The first generator of the Fd action will be given by TH . For the other generators, orient

arbitrarily edges of G−H −D, using Lemma 2.3. Partition into non-null sets

−−−−→
G−H = A1 ⊔ · · · ⊔Ad−1 if d ∈ N,
−−−−→
G−H = A1 ⊔ · · · ⊔Ai ⊔ . . . if d =∞,

withD ⊂ A1. The edges of Ai will be inductively slid to the generator i+1. Apply Theorem

3.3 using H ′ < H ′ ⊔ A1 and di, do ≡ 2 to get a subtree H ′ < H(1) which is induced by a

free F2-action, as it is a disjoint union of H and a Z-line, which can be taken without loss of

generality to be generated by a Z-action.

For d ≥ 3, one repeats this procedure with H(1) < H(1) ⊔ A2 to get an F3 action, and so

on and so forth.

To see that the graph does not have vanishing ends, notice that every set of the form Ny,x

contains an H ′-class. Since H ′ is type III, the cocycle is then unbounded in Ny,x. �

Remark 4.2. As noted in Remark 3.4, H needs not be ergodic in order to apply Theorem 3.3.

However, it is unclear how to construct such an H which would not be relatively ergodic in

G, but for which both the set of lighter (resp. heavier) end of edges of D′ are H-complete

sections. In this sense, we use the full strength of [Tse22].

We now give a sketch of how to construct an example showing how type III is required, as

opposed to compressibility, for Theorem 4.1.

Example 4.3. Consider a free pmp action F2 y (X, µ) and the relation on X ×N given by

(x, n) E (y, n)⇐⇒ y ∈ F2 · x

This is a type II relation preserving an infinite measure. Choose ν a probability measure

equivalent to the product of µ and the counting measure. Consider an action of F∞ generat-

ing E and let Y ⊂ X ×N be the convex hull of X ×{0} in the Schreier graph of the action.

The subgraph induced on Y must be locally finite, else one could find a treeing of the action

F2 y X with infinite cost. In particular, the retract along the Schreier graph X ×N → Y
has fibers over y a locally infinite tree almost surely. In particular, the subgraph induced by

the retract is smooth, hence has only vanishing ends in ν, as is proved in [TTD24].
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