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Abstract

In this thesis, we present the theory of left-orderable groups as well as the theory of Borel
complexity. Motivated by a question of F. Calderoni, D. Marker, L. Motto Ros and A. Shani,
we prove the following result: the isomorphism relation on Archimedean orders of Z2 is
hyperfinite, but not smooth.

Résumé

Dans ce mémoire, nous présentons la théorie des groupes ordonnables et la théorie de la
complexité borélienne. Motivé par une question de F. Calderoni, D. Marker, L. Motto Ros
et A. Shani, nous prouvons le théorème suivant: la relation d’isomorphisme sur les ordres
Archimédien de Z2 est hyperfinie, mais n’est pas concrètement classifiable.
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1 Introduction

The theory of Borel complexity has a rich range of applications in classification problems.
This theory defines a powerful way to study relative complexity of isomorphism problems
and more generally equivalence problems, especially those arising from group actions. To
motivate the introduction of Borel complexity, let us consider a naïve example:

Example 1.1. Take the class of finitely generated abelian groups and its isomorphism relation.
By the finitely generated abelian group structure theorem, if G is a finitely generated abelian
group, there is a unique decomposition of the form

G ∼= Z/pr11 Z× ...× Z/prnn × Zr,

where p1 ≤ ... ≤ pn and if pi = pi+k with k ∈ N, then ri ≤ ri+k. This theorem allows us to
associate to each isomorphism class a well-defined sequence (r, p1, r1, ..., pn, rn, 0, 0, ...) which
can be encoded in the decimal representation of a real number rG. We call this number a
numerical invariant for G. These numerical invariants are fairly easy to describe.
Another observation is that the structure theorem gives a canonical representative for every
isomorphism class. These are again simple to describe. These two properties make this
example a simple equivalence relation.

Of course, there is no mathematical rigor to the use of the words "simple" or "canonical"
in the preceding example. Let us study another example:

Example 1.2. Consider the interval [0, 1] and declare that two numbers r, s ∈ [0, 1] are
equivalent if r − s ∈ Q. Here, a set of representatives is called a Vitali set. Vitali sets are
known to be non-measurable and were the first example of such sets. This makes any set of
representatives for each class very complex and unsatisfying.
Can this relation have simple numerical invariants? In sense to be defined later, it is
impossible, since canonical representatives and simple numerical invariants are linked.

It is well known that the axiom of choice gives us a set of representatives for any equiva-
lence relation, but such representatives are often impossible to describe, let alone construct.
This is the case of the second example. Descriptive Set Theory tries to avoid the more an-
noying consequences of the axiom of choice and gives a class of sets that we are able to describe.

We will formalize all of this in Chapter 2, where we will define a notion of simple equiva-
lence relations, called "smooth". In this case, the first example is smooth while the second
isn’t. However, it does satisfy another condition called "hyperfiniteness", which guarantees
that it is not too complicated.

Our goal here is to apply Borel complexity to left-orderable groups. Invariant ordering on
groups have been studied extensively, going as far back as the work of Dedekind, Hölder and
Hilbert in the 19th century. One way in which the theory is rich is the range of mathematical
tools which can be applied to it. Other than abstract algebra, dynamics and topology are
fruitful ways to think of left-orderable groups.
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A classic dynamical result on left-orderable groups states that a group acting faithfully
in an order-preserving way on the real line must be left-orderable. This is the standard
dynamical technique of studying left-orderable groups by their actions on ordered sets. See
Andrés Navas’ article [8] for a presentation of dynamical methods associated to left-orderable
groups.

A particularly interesting topological conjecture is the L-space conjecture, which asks
whether there is an equivalence between left-orderability of the fundamental group of a
3-manifold (with some additional properties) and the existence of a foliation with desirable
properties on said manifold. This has already been established for manifolds admitting a
Seifert Fibered structure, that is those admitting a fibration over a circle with some regularity
properties. A good introduction to left-orderable groups and their link to low-dimensional
topology can be found in [3] by Adam Clay and Dale Rolfsen.

Recently, many authors have studied left-orderable groups from the point of view of Borel
complexity. The automorphisms of a group G give rise to a natural action on the space of
left-orders, which gives a relation we call the isomorphism relation on left-orders. One can
also restrict the action to the inner automorphisms of G, which gives the conjugacy action of
G on the space of left-orders on the group.

Adam Clay and Filippo Calderoni have proven in [1] that for a large class of left-orderable
groups G, the following is true: the conjugacy action of G on the space of its left-orders
induces a universal countable Borel equivalence relation. In particular, this class contains
the free groups, pure braid groups and is closed under both direct and free products.

On the other hand, F. Calderoni, D. Marker, L. Motto Ros and A. Shani have studied
in [2] the isomorphism relation on more specific class of orderings, called Archimedean.
Intuitively, Archimedean groups are those without any element which is infinitely small with
respect to another element. One of their theorems is the following:

Theorem 1.3 ([2]). The isomorphism relation on Archimedean orderings of Q2 is not smooth.
In particular, isomorphism of Archimedean-ordered group is not smooth.

In [2], F. Calderoni, D. Marker, L. Motto Ros and A. Shani also ask the following question:

Question 1.4 ([2], Question 2.8). Is the isomorphism relation on Archimedean orderings of
Q2 hyperfinite?

The same question can be asked for a more elementary group, namely Z2 in place of Q2.
Our main result is as follows:

Theorem 1.5. The isomorphism relation on Archimedean orderings of Z2 is hyperfinite, but
not smooth.

In particular, Theorem 1.5 implies that the isomorphism relation on all Archimedean-
ordered finitely generated groups is not smooth.
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2 Borel complexity

In this section, we provide the necessary background and present the theory of invariants we
alluded to in the introduction.

Definition 2.1. A topological space X is said to be Polish if it is separable and there exists
a complete metric generating its topology.

Examples 2.2.

• R with the usual metric is a complete space with Q dense in it, hence is Polish.

• Separable Banach spaces are Polish.

• (0, 1) is not closed in R and so is not complete with the induced metric. It is however
a Gδ subset of R, that is a countable union of closed sets. In general, we have the
following proposition:

Proposition 2.3. If X is a Polish space and Y ⊂ X, Y is a Polish space under the induced
topology if and only if Y is a Gδ in X.

• The Cantor space 2N and Baire space NN can both be given a complete metric defined
by

log d(x, y) = −min{i : x(i) ̸= y(i)}.

This metric generates the product topology, which is separable. Hence, both 2N and
NN are Polish.

• Countable products of Polish spaces are Polish.

One interesting fact about Polish spaces is that they respect the Continuum Hypothesis,
in the sense of the following proposition:

Proposition 2.4. If X is an uncountable Polish space, X is in bijection with R.

Sketch of proof. To prove this proposition, one splits the point of X by whether they have a
countable neighbourhood or not. Only countably many points can have this property, due to
separability and metrizability of X. By removing these countably many points, one is left
with a subspace we call the perfect kernel of X, which has no isolated points.

From a perfect Polish space X0, that is one without isolated points, one can construct
an injection from 2N ↪→ X0 using machinery called Cantor schemes. Conversely, one can
inject X0 into the Cantor space 2N by fixing a countable sequence of open sets generating
the topology and encoding points of X using it. Such a sequence can be found by fixing a
metric and a countable set witnessing separability. ■

Polish spaces have a rich structure when paired with the following definition:

Definition 2.5. Given a Polish space X, we construct the Borel σ-algebra as the smallest
collection BX of subsets of X such that:
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• BX contains every open and closet set of X.

• BX is closed under complements: If Y ∈ BX , Y c ∈ BX .

• BX is closed under countable union and intersection: If Y1, Y2, ... is a sequence in BX ,⋃
i Yi ∈ BX and

⋂
i Yi ∈ BX .

If Y ∈ BX , we simply say that Y is Borel. In case the underlying space is clear, we only note
B.

Definition 2.6. If X,Y are two Polish spaces and f : X → Y is a function between them,
we say that f is Borel if

∀B ∈ BY , f
−1(B) ∈ BX

In usual measure theoretic language, this says that f is measurable with respect to the Borel
σ-algebra of each space.

We have the following standard theorem which completely anwers the question of isomor-
phism of Polish spaces and their σ-algebra:

Theorem 2.7 (Borel Isomorphim Theorem). If X,Y are two Polish spaces of the same
cardinality, they are Borel-isomorphic in the following sense: there exists a bijection f : X →
Y such that both f, f−1 are Borel.

This theorem is a considerable strenghtening of Proposition 2.4. It also motivates the
following definition:

Definition 2.8. If X is a set along with a σ-algebra A, we say that X is a standard Borel
space if it there is a σ-algebra isomorphism between (X,A) and (Y,BY ), where Y is some
Polish space. Standard Borel spaces are, up to Borel isomorphism, uniquely defined by their
cardinality, by the Borel Isomorphism Theorem.

Examples 2.9.

• If n ∈ {1, 2, ...,N} , the only standard Borel structure on a space X with |X| = n is
the discrete one. We refer to countable spaces directly by their cardinality, that is we
denote n for the standard Borel space with n elements.

• R and (0, 1) are isomorphic standard Borel spaces. In fact, they are homeomorphic,
which is much stronger. However, we have no such homeomorphism between R and
[0, 1], yet they are Borel isomorphic.

2.1 Borel equivalence relations

Since Borel sets are, informally, those we can describe with countable information from the
topology, we wish to base the desired theory of invariants on the notion of Borel subsets and
functions.
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Definition 2.10. An equivalence relation E on a standard Borel space X is said to be
a Borel equivalence relation if it is Borel as a subset of X2. In the case where every
equivalence class is countable (resp. finite), we say that E is a countable (resp. finite) Borel
equivalence relation.

Definition 2.11. Let X,Y be two Polish spaces with respective Borel equivalence relations
EX , EY . A Borel function f : X → Y is said to be a reduction from EX to EY if

x EX x′ ⇐⇒ f(x) EY f(x′).

If the equivalence relations are clear, we just say that f is a reduction.

Remark 2.12. The previous definition is of little use without the Borel condition. Using
choice, the notion of non-Borel reduction only compares the number of equivalence classes
of EX and EY . One can also consider slightly bigger σ-algebras, such as those of Baire-
measurable sets or µ-measurable sets, where µ is a Borel probability measure on X. Both of
these amount to adding "negligible" sets, either from the measure or topology point of view.

We give some properties of reductions:

Proposition 2.13. Let X,Y, Z be Polish spaces with respective Borel equivalence relations
EX , EY , EZ and Borel functions f : X → Y, g : Y → Z.

• If both f, g are reductions, g ◦ f : X → Z is also a reduction.

• Let G be a countable group with two Borel actions G ↷ X and G ↷ Y such that
EX = EX

G and EY = EY
G . If f is G-invariant and the pre-image of every point is

contained in a single EX
G -class, then f is a reduction. That is,

∀x ∈ X, ∀g ∈ G, f(g · x) = g · f(x) and(
∀x, x′ ∈ X, f(x) = f(x′) =⇒ x EX

G x′
)
=⇒ f is a reduction.

Proof. For the first property, consider the equivalence

x EX x′ ⇐⇒ f(x) EY f(x′) ⇐⇒ g(f(x)) EZ g(f(x′)).

For the second property, using G-invariance of f :

x EX
G x′ =⇒ ∃g ∈ G, g · x = x′

=⇒ ∃g ∈ G, g · f(x) = f(x′)

=⇒ f(x) EY
G f(x′).

For the reverse implication, we use both G-invariance of f and the fact that pre-images are
EX

G -invariant:

f(x) EY
G f(x′) =⇒ ∃g ∈ G, g · f(x) = f(x′)

=⇒ ∃g ∈ G, f(g · x) = f(x′)

=⇒ ∃g ∈ G, (g · x) EX
G x′

=⇒ x EX
G x′.

The last implication uses the fact that ∀g ∈ G, x EX
G (g · x). ■
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Actions from countable groups are a great way to introduce countable Borel equivalence
relations.

Definition 2.14. Given a countable group G and a Borel action G ↷ X, we define the
orbit equivalence relation

x EX
G x′ ⇐⇒ ∃g ∈ G, g · x = x′.

This is a countable Borel equivalence relation.

Let us go through a few examples of useful Borel equivalence relations:

Examples 2.15.

• If X is a Polish space, its diagonal is a closed subset of X2, since X is Hausdorff. Thus,
the identity relation, which we denote =X , is a finite Borel equivalence relation.

• If G is a countable group, letting G ↷ 2G by shifting sequences yields a wide class of
Borel equivalence relations. More precisely, if x : G → 2 and γ ∈ G,

(γ · x) (g) := x(g · g1 · g2).

• We define E0 to be the relation of eventual equality on 2N:

(xn) E0 (yn) ⇐⇒ ∃N, ∀n ≥ N, xn = yn.

This relation will be of particular interest in the next section.

• If X = R, we consider the action by translations Q ↷ R and its orbit equivalence
relation E′

v. We call the restriction of E′
v to [0, 1] the Vitali equivalence relation, which

we denote Ev. This is the second example of the introduction.

Examples 2.16.

• If X is countable, its Borel σ-algebra is discrete, making every function with X as
domain Borel. Thus, there is a reduction from =X to =Y exactly when |X| ≤ |Y |.

• The eventual equality relation, E0, cannot be reduced to =R. We will mention how to
prove this in Proposition 2.21.

• The Vitali equivalence relation Ev cannot be reduced to =R. This is as we mentioned
in the introduction, when we said that Ev had no suitable numerical invariants. While
we could prove this separately from the previous example, if we can show that E0

reduces to Ev, from composition it is clear that Ev cannot reduce to =R. We can do
something stronger, which requires the following definition.

Definition 2.17. Let X,Y be Polish spaces with corresponding Borel equivalence relations
EX , EY . If there are reductions f : X → Y and g : Y → X, we say that EX and EY are
bireducible.

Examples 2.18.

• For countable Polish spaces, bireducibility of Borel equivalence relations coincide with
equality of the cardinality of equivalence classes.

• As hinted at before, we can show that E0 and Ev are bireducible. This will be done in
Corollary 2.28.
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2.2 Notable complexities of countable Borel equivalence relations

In this section, we want to give a semi-complete picture of the hierarchy of complexity in
countable Borel equivalence relations. Throughout this section, let X/EX denote the set of
equivalence classes of EX .

In Examples 2.16, we mentioned that if X is a countable space, there is a reduction
from =X to =Y exactly when |X| ≤ |Y |. Similarly, if a countable Borel equivalence re-
lation EX has only countably many equivalence classes, it is bireducible with =n, where
n = |X/ EX | ∈ {1, 2, ..,N}.

This shows that =1,=2, ...,=N forms an initial sequence for the complexity hierarchy.
The following theorem strengthens this observation to include =R:

Theorem 2.19 (Mycielski, Silver). If X is an uncountable standard Borel space and EX is
a countable Borel equivalence relation, there is a Borel reduction from =R to EX .

This is a special case of a theorem by Silver [9]. This also follows from an earlier theorem
by Mycielski. This theorem motivates the following definition:

Definition 2.20. Given a Polish space X along with a Borel equivalence relation EX , we
say that EX is smooth if it is bireducible to =Y , where Y is some Polish space.

One might ask whether every Borel equivalence relation is smooth, which we can answer
by the following proposition:

Proposition 2.21. E0 is not smooth.

Sketch of proof. To prove this, one uses that fact that E0 is an ergodic equivalence relation:
if A ⊂ [0, 1] is an E0-invariant Borel set, its Lebesgue measure must be 0 or 1.

Considering a Borel reduction f from E0 to =2N , one can split 2N into points x such that
f(x)(0) = 0 and points x such that f(x)(0) = 1. Since these are two Borel E0-invariant
subsets, one must have full measure. Then, one splits this set again considering what is
f(x)(1).

Doing this infinitely many times gives a sequence in 2N whose preimage needs to be of
full measure, but is also a single equivalence class, hence countable. This is a contradiction
since the measure on 2N is non-atomic. ■

Silver’s theorem makes smooth equivalence relations the least elements of the partial
order of Borel complexity, with =R being the minimum for uncountable spaces. We have
that E0 is a successor to smoothness, given by the following dichotomy.

Theorem 2.22 (Glimm-Effros Dichotomy, [6]). If X is a standard Borel space with a Borel
equivalence relation EX , exactly one of the following is true:

• EX is smooth,

• there is a Borel reduction from E0 to EX .
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Let us study E0 more carefully. One of its most interesting properties is that it is
approximable by finite equivalence relation, in the sense of the following proposition:

Proposition 2.23. There exists an increasing sequence of finite Borel equivalence relations
Fi such that E0 =

⋃
i∈N Fi.

Proof. Recall that two sequences x = (xi), y = (yi) are E0-equivalent exactly when

∃N ∈ N,∀n ≥ N, xn = yn.

Define Fi as follows:

x Fi y ⇐⇒ ∀n ≥ i, xn = yn.

Then, Fi has equivalence classes with exactly 2i elements, implying that they are finite Borel
equivalence relations. Further, if i < j, then x Fi y =⇒ x Fj y and if x E0 y, there is some N
such that x FN y, as required. ■

Definition 2.24. Given EX an equivalence relation on a Polish space X, we say that EX

is hyperfinite if there exists an increasing sequence of finite Borel equivalence relations
Fi, i ∈ N such that

E =
⋃
i∈N

Fi.

Note that every hyperfinite relation is a countable Borel equivalence relation.

Examples 2.25.

• E0 is hyperfinite, by Proposition 2.23.

• Ev is hyperfinite. To see this, consider the equivalence relations

x Fi y ⇐⇒ (x− y)i! ∈ Z.

There are at most i! elements in each Fi-classes. These are increasing and their union
is the Vitali equivalence relation.

E0 is in fact the most complex hyperfinite relation, in the sense of the following proposition:

Theorem 2.26 (Dougherty-Jackson-Kechris, [4]). If EX is hyperfinite, there is a Borel
reduction from EX to E0.

Corollary 2.27. If EX is hyperfinite, EX is either smooth or bireducible to E0.

Proof. Assume that EX is not smooth. By the Glimm-Effros Dichotomy, E0 reduces to
EX . Since EX is hyperfinite, there is a reduction from EX to E0. Hence, E0 and EX are
bireducible. ■

Corollary 2.28. The Vitali equivalence relation Ev is bireducible with E0. In particular, Ev

is not smooth.
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3 Left-orders and Archimedean orders

In this section, we assume that groups are non-trivial.

Definition 3.1. A total order < on a group G is said to be a left-order if it is left-invariant,
that is if

∀g, h, k ∈ G, g < h ⇐⇒ kg < kh.

Examples 3.2.

• With the usual orders, Z,Q,R are all left-orderable.

• If G,H are left-orderable with orders <G, <H , G×H is left-orderable with respect to
the lexicographic order.

• In particular, Zn,Qn,Rn are all left-orderable.

• Given an exact sequence

1 −→ H
ι−→ G

π−→ K −→ 1

where H,K are left-orderable with orders <H , <K , there exists an order on G compatible
with <K and <H , defined by

g1 <G g2 ⇐⇒
{

idK <K ι−1(g−1
1 g2) if π(g1) = π(g2)

π(g1) < π(g2) else.

• In particular, a semi-direct product of orderable groups is itself orderable.

• The group G = ⟨x, y | yxy−1 = x−1⟩ can be described as a semi-direct product Z ⋊ Z.
It follows that it is left-orderable.

• In general, if a group G has a left-order < and g ∈ P such that g > id,

id < g < g2 < g3 < ...

This is impossible if G has torsion. In particular, finite groups are not left-orderable.

The following gives a nice algebraic characterization of left-orderability

Proposition 3.3. If < is a left-order on G, the set of positive elements of G with respect to
<,

P< := {g ∈ G : id < g}

satisfies the two following conditions:

1. P< is a sub-semigroup of G.

2. G can be partitioned as G = P< ⊔ {id} ⊔ P−1
< .
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Conversely, if P satisfies conditions 1 and 2, P determines a left-order <P as follows:

g <P h ⇐⇒ h−1g ∈ P.

Furthermore, the constructions are dual in the following sense:

P = {g ∈ G : id <P g}
g < h ⇐⇒ h−1g ∈ P<.

Definition 3.4. If P satifies the conditions enumerated in Proposition 3.3, we say that it is
a positive cone of G. In light of that proposition, the space of left-order is defined as

LO(G) :=
{
P ∈ 2G : P is a positive cone

}
.

Since it is defined by closure properties, we can prove that LO(G) is a closed subset, thus
compact as well, hence Polish. If it is still unclear how to prove such a thing, a similar proof
is given in Proposition 3.9.

Remark 3.5. If P is a positive cone, P−1, the pointwise inversion of P , is also a positive
cone whose order corresponds to reversing that of P . We also refer to the set P−1 as the
negative elements of <P , since

P−1 = {g ∈ G : id >P g} .

We call P, P−1 opposite cones.

Definition 3.6. A left-order < on G is said to be Archimedean if

∀g, h > id, ∃n, gn > h.

If P is a positive cone and <P is Archimedean, we also say that P is Archimedean.

Examples 3.7.

• The usual orders on Z,Q,R are Archimedean.

• Both Zn,Qn can be granted Archimedean orders. We will construct orders for Z2 in
the next section, in a way that is generalizable to Zn. For Qn, it suffices to note that
any orders on Zn can be extended to an order on Qn.

• The group G = ⟨x, y | y−1xy = x−1⟩ cannot be given an Archimedean order. Suppose
that < is an order on G. Up to isomorphism, we can assume that x, y are both positive.
Given some n such that xn > y, the following calculation shows a contradiction:

xn > y =⇒ yx−ny−1 > y

=⇒ x−ny−1 > id

=⇒ y−1 > xn > y > id #.

Definition 3.8. We denote Ar(G) ⊂ LO(G) for the space of Archimedean positive cones of
G.
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Proposition 3.9. The space of Archimedean orders Ar(G) is a Gδ subset of LO(G), thus is
Polish with the inherited topology from 2G.

Proof. Consider the subbasic clopen sets of LO(G), which are of the form

Ug := {P ∈ LO(G) : g ∈ P} ,

for g ∈ G.
Rewriting the Archimedean condition in term of positive cones, we get

∀g, h ∈ P,∃n ∈ N, h−1gn ∈ P ⇐⇒ P ∈
⋂

g,h∈P

⋃
n∈N

Uh−1gn

=⇒ Ar(G) =
⋂

g,h∈G
Ug ∩ Uh ∩

(⋃
n∈N

Uh−1gn

)
.

This is a countable intersection of open sets, hence a Gδ. ■

In general, if ϕ ∈ Aut(G) and P ∈ LO(G), applying ϕ · P := {ϕ(h) : h ∈ P} gives us
another positive cone. This gives us an action Aut(G) ↷ LO(G), which restricts to an action
Aut(G) ↷ Ar(G). Furthermore, every automorphism acts as a homeomorphism of LO(G)
and Ar(G).

In the case when G is finitely generated, Aut(G) is countable, meaning that E
Aut(G)
LO(G) is a

countable Borel equivalence relation.

3.1 Description of Archimedean orders on Z2

Archimedean orders on Z2 can be characterized precisely using the following observation.

Proposition 3.10. Every positive cone P ∈ LO(Z2) contains a set of the form HP ∩ Z2,
where HP is a unique open half-plane with (0, 0) ∈ ∂HP .

Note that we will stop mentioning that half-planes are open and just say half-planes.

Proof. Start by extending P to a positive cone P ∗ ∈ LO(Q2) as follows:

P ∗ := Q>0 · P =
{
v ∈ Q2 : ∃n ∈ N>0, n · v ∈ P

}
.

Then, consider a partition of R2 into three pieces:

R1 ={x ∈ R2 : ∃ε, ∀x′ ∈ B(x, ε) ∩Q2, x′ ∈ P ∗},
R2 ={x ∈ R2 : ∃ε, ∀x′ ∈ B(x, ε) ∩Q2, x′ ∈ −P ∗},
R3 ={x ∈ R2 : ∀ε, ∃x+, x− ∈ B(x, ε) ∩Q2, x+ ∈ P ∗ and x− ∈ −P ∗}.

There are two main observations that allows us to establish the proposition:

• Both R1 and R2 are non-empty open sets.

• R3 is a non-empty vector subspace of R2.
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∂HP

P

HP

Figure 1: A positive cone in Z2. Bigger dots represent elements of P and the shaded region
is HP .

To establish the first observation, note that R2 = −R1. As such, we deal only with R1.
Openness is direct from the definition: if ε witnesses that x ∈ R1, B(x, ε) ⊂ R1.

Out of
(
1
0

)
and

(
−1
0

)
, exactly one is positive. Similarly for the pair

(
0
1

)
and

(
0
−1

)
.

Since P ∗ is closed under addition, at least one quadrant must be entirely positive and so the
reals contained in its interior are in R1.

As for the second observation, given x, y ∈ R3 and ε, one can pick two vectors
x̃ ∈ B(x, ε2) ∩ Q2 and ỹ ∈ B(y, ε2) ∩ Q2 such that x̃, ỹ ∈ P ∗. Since positive cones are
closed under addition, x̃+ ỹ ∈ P ∗ and x̃+ ỹ ∈ B(x+ y, ε). We can do a similar argument to
find a vector in −P ∗ ∩B(x+ y, ε).

Scalar multiplication is done exactly in the same manner. Since there are both positive
and negative vectors, there are arbitrarily small positive and negative vectors, getting that
(0, 0) ∈ R3. Thus, R3 is a vector subspace of R2.

However, since R−R3 = R1 ⊔R2 is a union of two non-empty open sets, it must be a
non-empty disconnected set. The only subspace that can disconnect R2 in this fashion is a
line, so that R3 is a line through the origin, with R1, R2 being the half-planes on either side
of it.
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It can then be verified that P ⊃ R1 ∩ Z2 and that (0, 0) ∈ R3 = ∂R1. We take
HP := R1. Uniqueness is achieved by the fact that if we are given a different half-plane
H with ∂H ∋ (0, 0), it must intersect R2 ∩ Z2 non-trivially, meaning it is not contained in
P . ■

Remark 3.11. We say that the line ∂HP delimits P , where HP comes from Proposition
3.10. Note that by that proposition, for every cone P ∈ LO(Z2), there is exactly one line ∆
which delimits it.

Remark 3.12. We will not need the full strength of this characterization, but Proposition
3.10 allows us to describe the left-orders and the Archimedean orders of Zn for any n.

We denote by Irr the set of irrational numbers. We denote by P1
Irr the set of lines ∆ ⊂ R2

such that ∆ ∩ Z2 = {(0, 0)}.

Definition 3.13. We define µ : P1
Irr → Irr such that µ(∆) is the unique irrational such that(

µ(∆)
1

)
∈ ∆.

This can be shown to be a bijection.

Proposition 3.14. A line ∆ ⊂ R2 is in P1
Irr if and only if it delimits an Archimedean

positive cone.

Proof. Let ∆ ⊂ R2 be a line and P ∈ LO(Z2) a positive cone delimited by it. Pick a vector
v ⊥ ∆ and consider the functional fv(x) = ⟨v, x⟩, where ⟨·, ·⟩ corresponds to the usual scalar
product.

We can assume that P, v are on the same side of ∆, meaning that for every vector
x ∈ P, fv(x) ≥ 0. Similarly, x ∈ P c ⇒ fv(x) ≤ 0.

Suppose that P is not Archimedean. We want to show that P ∩∆ is non-empty. Since
P is not Archimedean, there are x, y ∈ P with ∀n, nx < y. Using linearity of fv:

∀n, nx < y

⇐⇒∀n, 0 < y − nx

⇐⇒∀n, 0 ≤ fv(y − nx)

⇐⇒∀n, 0 ≤ fv(y)− nfv(x)

This is only possible if fv(x) = 0, meaning that x ∈ ∆, as required.

For the other implication, suppose that there is some vector x ∈ P ∩∆. Let y ∈ P −∆.
Again using linearity and that fact that fv(x) > 0 implies that x ∈ P ,

∀n, 0 < fv(y)− nfv(x)

=⇒∀n, y − nx ∈ P

⇐⇒∀n, nx < y.

Hence, P is not Archimedean, concluding the proof. ■
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This allows us to define the following map:

Definition 3.15. We define Λ : Ar(Z2) → P1
Irr as the map associating to a positive cone

P the line Λ(P ) = ∂HP , which delimits it. This is well-defined in light of Proposition 3.10,
Remark 3.11 and Proposition 3.14.

Remark 3.16. When P1
Irr is given the topology induced by µ, Λ becomes continuous, hence

Borel.

Proposition 3.17. The map Λ : Ar(Z2) → P1
Irr is surjective and 2-1. Furthermore, every

pre-image is of the form {P,−P}.

Proof. For surjectivity, note that by the forward implication of Proposition 3.14, every line
∆ ∈ P1

Irr delimits at least one Archimedean positive cone.

For 2-1, consider ∆ ∈ P1
Irr and the two open half-plane on either side of it, H1, H−1.

Given P ∈ Λ−1(∆) with P ⊃ HP ∩ Z2, we know HP is equal to either H1 or H−1, since
these are the only two half-planes with boundary ∆.
Since ∆ ∩ Z2 = {(0, 0)} and H−1 = −H1, we have that(

Hi ∩ Z2
)
⊂ P =⇒ (H−i ∩ Z2) ⊂ −P

=⇒ H−i ∩ P = ∅
=⇒ P ⊂ (Hi ∩ Z2) ∪ (∆ ∩ Z2)

=⇒ P = Hi ∩ Z2.

Thus there are exactly two cones in the pre-image of ∆:

Λ−1(∆) =
{
H1 ∩ Z2, H−1 ∩ Z2

}
These cones are opposites, as required. ■

Remark 3.18. This proof tells us a little bit more, that in the Archimedean case, Proposi-
tion 3.10 is refined so that P = HP ∩ Z2.
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4 Borel complexity of Archimedan orders

In this section, we wrap up the work of the previous sections and discuss Archimedean orders
of Z2 in the context of Borel complexity and present our result, Theorem 1.5.

Remember that since P1
Irr is composed of lines ∆ ⊂ R2 such that ∆ ∩ Z2 = {(0, 0)},

GL2(Z) acts on it through its action on R2, which fixes both Z2 and the origin. We now
wish to relate the isomorphism relations on Ar(Z2) with this action on P1

Irr, which we can do
using the two following propositions.

Proposition 4.1. The map Λ : Ar(Z2) → P1
Irr is a GL2(Z)-invariant reduction from E

Ar(Z2)
GL2(Z)

to E
P1
Irr

GL2(Z).

Proof. As noted in the remark following Proposition 3.17, in the Archimedean case, P =
HP ∩ Z2. We get that when M ∈ GL2(Z),

Λ(M · P ) = Λ
(
M ·

(
HP ∩ Z2

))
= Λ

(
(M ·HP ) ∩ Z2

)
.

Since GL2(Z) acts continuously,

∂ (M ·HP ) = M · ∂HP

=⇒ Λ(M · P ) = M · Λ(P ).

Due to Proposition 2.13, the only thing left to show is that pre-images of Λ are themselves
GL2(Z)-invariant. Since pre-images are all of the form {P,−P} by Proposition 3.17 and that

−P =

(
−1 0
0 −1

)
· P,

we get that Λ is a reduction, as required. ■

Proposition 4.2. There is a continuous right-inverse ι : P1
Irr → Ar(Z2) of Λ which is a

reduction from E
P1
Irr

GL2(Z) to E
Ar(Z2)
GL2(Z).

Proof. Given ∆ ∈ P1
Irr, there are two choices for ι(∆), since for some P ∈ Ar(Z2),

Λ−1(∆) = {P,−P} .

Out of these cones, exactly one contains the vector
(
1
0

)
. Take this positive cone for ι(∆).

Since Λ is GL2(Z)-invariant, by Proposition 4.1 we get

ι(M ·∆) ∈ Λ−1(M ·∆)

= M · {ι(∆),−ι(∆)}
= {M · ι(∆),−M · ι(∆)}
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Thus, we either get

ι(M ·∆) = M · ι(∆)

or ι(M ·∆) = −M · ι(∆).

In both cases, we get

ι(∆) E
GL2(Z)
Ar(Z2)

ι(M ·∆).

This proves that

∆ E
GL2(Z)
PIrr
1

∆′ =⇒ ι(∆) E
GL2(Z)
Ar(Z2)

ι(∆′).

The reverse implication is given by the fact that Λ is a reduction and Λ ◦ ι = id. ■

We wish to reduce the orbit equivalence relation E
P1
Irr

GL2(Z) to an equivalence relation on
Irr. In our case, this is the orbit equivalence relation of the action by Möbius transformation,
defined as follows:

Definition 4.3. We define the action by Möbius transformations GL2(Z) ↷ Irr to be(
a b
c d

)
· α :=

aα+ b

cα+ d

Proposition 4.4. The Borel equivalence relations E
P1
Irr

GL2(Z) and EIrr
GL2(Z) are bireducible.

Proof. We claim that the map µ : P1
Irr → Irr is a reduction from E

P1
Irr

GL2(Z) to EIrr
GL2(Z) and its

inverse is a reduction from EIrr
GL2(Z) to E

P1
Irr

GL2(Z).
Since µ is a bijection, it is sufficient to prove that it is GL2(Z)-invariant, applying Propo-

sition 2.13.

Let ∆ ∈ P1
Irr and define α∆ := µ(∆). Let M =

(
a b
c d

)
∈ GL2(Z).(

α∆

1

)
∈ ∆,

=⇒M ·
(
α∆

1

)
∈ M ·∆

=⇒
(
a b
c d

)
·
(
α∆

1

)
∈ M ·∆

=⇒
(
aα∆ + b
cα∆ + d

)
∈ M ·∆

=⇒ 1

cα∆ + d
·
(
aα∆ + b
cα∆ + d

)
∈ M ·∆

=⇒
(
M · α∆

1

)
=

(aα∆+b
cα∆+d

1

)
∈ M ·∆

=⇒µ (M ·∆) = M · µ(∆),

as required. ■
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Theorem 4.5. The action GL2(Z) ↷ Ar(Z2) is bireducible with GL2(Z) ↷ Irr.

Proof. From Proposition 4.4, both µ, µ−1 are reductions. From Propositions 4.1, 4.2, Λ, ι
are reductions. Using Proposition 2.13, a composition of reductions is still a reduction.
Thus, the two following functions are reduction:

µ ◦ Λ : Ar(Z2) → Irr

ι ◦ µ−1 : Irr → Ar(Z2).

■

As for the complexity of EGL2(Z)
P 1
Irr

, we cite the following theorem:

Theorem 4.6 ([7]). The action by Möbius transformations GL2(Z) ↷ Irr is hyperfinite, but
not smooth.

Sketch of proof. The proof rests on a crucial fact proved in [5, thm 175], reformulated in [7]
in the context of Borel equivalence relations. The crucial fact states, with our notation, that
if α, β ∈ Irr,

∃M ∈ GL2(Z), α = M · β ⇐⇒ α Et β,

where x denotes the continued fraction of x, that is the sequence (ai) with

x = a1 +
1

a2 +
1

a3+...

.

The equivalence relation Et on NN is the tail equivalence relation, defined as follows:

a Et b ⇐⇒ ∃i, j, ∀n, ai+n = bj+n.

Et is known to be hyperfinite, but not smooth, as cited in [7]. ■

Joining Theorems 4.5 and 4.6, we get a proof of Theorem 1.5:

Proof of Theorem 1.5. We wish to show that the isomorphism relation on Ar(Z2) is hyperfi-
nite, but not smooth. From Theorem 4.5 we get that E

GL2(Z)
Ar(Z2)

is bireducible to E
GL2(Z)
P 1
Irr

. By
Theorem 4.6, this is hyperfinite, but not smooth. ■
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5 Conclusion

There are multiple interesting ways to expand on this line of research. As mentioned, a
question of [2] is whether Theorem 1.3 can be strengthened to show hyperfiniteness. We ask
the following intermediate question:

Question 5.1. Let n ∈ Z and Z[ 1n ] be the associated ring extension of Z. Is the isomorphism
relation on Archimedean ordering of Z[ 1n ]

2 hyperfinite, but not smooth?

The isomorphism relation for Archimedean orders of Q2 is an increasing union of the
isomorphism relations for Z[ 1n! ]. A positive answer to this question would thus give an
interesting example to study the conjecture stating that an increasing union of hyperfinite
relations is itself hyperfinite.

There is also a possible generalization to higher dimensions, as some tools we use to
characterize Archimedean orderings generalize nicely using the Grassmannian Gr(n− 1,Rn),
that is the space of hyperplanes of dimension n− 1 in Rn.

Question 5.2. Is the isomorphism relation on the Archimedean orderings of Zn hyperfinite
but not smooth?

Question 5.2 is of particuliar interest. By classical results, Archimedean-ordered groups are
abelian and left-orderable groups have no torsion. Thus, every finitely generated Archimedean-
orderable groups if of the form Zn for some n, by the structure theorem mentionned in
1.1. This makes the isomorphism relation on finitely generated Archimedean ordered groups
highly dependent on the relations for each Zn. As an example, a positive answer to Question
2 would ensure that isomorphism of Archimededean-ordered finitely generated groups is
hyperfinite.
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