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Abstract. Let (X, τ) be a Polish space with Borel probability measure µ, and G a locally
finite one-ended Borel graph on X. We show that G admits a Borel one-ended spanning tree
generically. If G is induced by a free Borel action of an amenable (resp., polynomial growth)
group then we show the same result µ-a.e. (resp., everywhere). Our results generalize recent
work of Timár, as well as of Conley, Gaboriau, Marks, and Tucker-Drob, who proved this in
the probability measure preserving setting. We apply our theorem to find Borel orientations
in even degree graphs and measurable and Baire measurable perfect matchings in regular
bipartite graphs, refining theorems that were previously only known to hold for measure
preserving graphs. In particular, we prove that bipartite one-ended d-regular Borel graphs
admit Baire measurable perfect matchings.
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1. Introduction

In this paper we are concerned with determining which hyperfinite Borel graphs admit Borel
one-ended spanning trees and with applications of these objects to definable combinatorics.

Recall that a Borel graph on a Polish space (X, τ) is a graph whose vertex set V (G) is
X and whose edge set E(G) is a Borel subset of X2. A Borel graph is hyperfinite if it can
be written as an increasing union of component finite Borel graphs. A connected graph G
is one-ended if for every finite F ⊂ V (G) the induced subgraph on V (G)− F has exactly
one infinite connected component, and a non-connected graph is one-ended if each of its
connected components is. Such graphs arise naturally in various contexts, such as actions of
amenable groups, and characterizing the combinatorial properties of such graphs has been a
major focus of descriptive graph theory since its inception in the work of Kechris, Pestov.
amd Todorcevic [KST99]. See [Lov12, KM16, Pik20] for surveys and introductions to this
topic.

In the special case of probability measure preserving (pmp) graphs (also refered to as
graphings in the literature), the existence of finitely-ended spanning trees has been well
studied and frequently applied. In the pmp context, a Borel graph is a.e. hyperfinite if and
only if it admits a Borel a.e. spanning tree with at most two ends [Ada90, BLPS01]. Recently,
Timár [Tim19] and independently Conley, Gaboriau, Marks, and Tucker-Drob[CGMTD],
refined this to show that the spanning tree can be chosen to have the same number of
ends as the original component. This latter fact already has a number of applications
in probability theory, measurable equidecompositions, and measurable combinatorics; see
[BKS, Tim21b, Tim21a].

Outside of the pmp setting it is no longer true that hyperfinite graphs admit spanning trees
with at most two ends, for example, the Schreier graph of the boundary action of F2. The
so-called tail equivalence relation was shown to be hyperfinite by Dougherty, Jackson, and
Kechris in [DJK94], and Marquis and Sabok proved hyperfiniteness for boundary actions of
hyperbolic groups in [MS20]. Since the constructions of one-ended spanning trees in [Tim19]
and [CGMTD] both rely on the existence of at most two-ended spanning trees, the methods
from these papers can not be easily adapted to other circumstances. In the present paper we
show that the issue of not having a two-ended spanning tree can typically be overcome. We
give more direct constructions of one-ended spanning trees in most of the natural settings
where hyperfiniteness is guaranteed.

Our main result is the following:

Theorem 1.1. Let X be a Polish space equipped with a Borel probability measure µ. Any
locally finite one-ended Borel graph G on X admits a Borel one-ended spanning tree:

(i) on an invariant comeagre set.
(ii) on an invariant µ-conull set if G is induced by a free Borel action of an amenable

group.
(iii) everywhere if G is induced by a free Borel action of a polynomial growth group.

In fact, in each case of Theorem 1.1 we not only construct one-ended spanning trees
but connected toasts (particular strong witnesses to hyperfiniteness, precisely defined in
Definition 2.2 and originally introduced by the first author, Kun, and Sabok in [BKS]), whose
existence is potentially stronger; see Theorems 3.3, 3.5 and 3.16.

As a consequence of Theorem 1.1, we are able to quickly deduce new results on definable
matchings and balanced orientations that were previously known only to hold for pmp graphs.
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For example, we prove the following Baire measurable analogue of the main result of [BKS].
Here and in the rest of the paper, by generically we mean on a G-invariant comeagre Borel
set.

Theorem 1.2. Any bipartite one-ended d-regular Borel graph has a Borel perfect matching
generically.

Previously, the only general classes of bipartite Borel graphs that were known to admit Borel
perfect matchings generically were acyclic or of exponential growth (see the work of Conley
and Miller [CM17, Theorem B] and Marks and Unger [MU16, Theorem 1.3] respectively).
Moreover, it is known that neither the one-ended assumption nor the d-regular assumption
can be dropped from 1.2 due to ergodicity obstructions, even when such graphs admit Borel
fractional perfect matchings (see the work of Conley and Kechris [CK13, Section 6] and [BKS,
Example 3.1] respectively).

We also show that connected toasts are enough to find Borel balanced orientations
(i.e. Borel orientations of the edges of a graph so that the in-degree of each vertex is equal to
its outdegree) of even-degree graphs, refining and generalizing [BKS, Corollary 3.7].

Theorem 1.3. Every even-degree Borel graph that admits a connected toast also admits a
Borel balanced orientation. In particular, every one-ended even-degree Borel graph admits a
Borel balanced orientation generically, and every free Borel action of a superlinear growth
amenable (resp., polynomial growth) group admits a Borel balanced orientation a.e. (resp.,
everywhere).

Again, the irrational rotation graph and its variants show that this result fails for two-ended
graphs. Theorem 1.3 also extends some cases of recent results of Thornton, who showed in
[Tho22] that even degree Borel graphs that are pmp (resp., of subexponential growth) admit

Borel orientations with outdegree at most deg(v)
2

+ 1 a.e. (resp., everywhere), and of Bencs,
Hrušková, and Tóth, who showed in [BHT] that even degree planar lattices have factor of
i.i.d balanced orientations.

1.1. Future work.

In this paper we were able to show that all locally finite one-ended Borel graphs admit
one-ended spanning trees generically, and it was already known that such graphs admit
one-ended spanning trees a.e. if they are hyperfinite and pmp. While we were able to remove
the pmp assumption from the latter result for Schreir graphs of actions of amenable groups,
it remains unclear if we can do this in general for hyperfinite graphs.

Question 1. Does every locally finite, one-ended, hyperfinite Borel graph also admit a Borel
one-ended spanning tree a.e.?

We have also shown that the existence of connected toasts is enough to ensure that d-regular
bipartite Borel graphs admit Borel perfect matchings almost everywhere and generically. It
remains unknown if this is enough to have a Borel perfect matching everywhere, but it was
shown by Gao, Jackson, Krohne, and Seward in [GJKS] that the standard Schreir graphs of
Zd-actions admit Borel perfect matchings, so it seems possible that this fact can be extended.

Question 2. Does every d-regular bipartite Borel graph that admits a connected toast admit
a Borel perfect matching?
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Given that the classical Kőnig theorem implies every d-regular bipartite graph admits a
proper edge coloring with d colors, we could also strengthen Question 2 to ask for a Borel
d-coloring. With Theorem 1.2 in mind, this is most likely much easier to obtain generically.

Question 3. Does every d-regular bipartite one-ended Borel graph G admit a Borel edge
coloring with d colors generically?

It is known by the work of the first author and Weilacher [BW21] that every such graph
admits a Baire measurable edge coloring with d+ 1 colors even when the one-ended condition
is dropped from the above, but as noted already one-endedness is required to find even a
single Baire measurable perfect matching (and unlike edge colorings with d+ 1 colors, each
color in an edge coloring with d colors is a perfect matching.).

Acknowledgements. The authors thank Anush Tserunyan for pointing out that in the
Connes-Feldman-Weiss theorem (see [CFW81]), unweighted Følner sets suffice in the (weighted)
quasi-pmp setting, and suggested looking at Marks’s proof in [Mar17]. We are grateful to
Anton Bernshteyn for pointing out that one can use the construction in Theorem 4.8 (a)
of [CJM+20] to produce toasts and not just witnesses to asi = 1 in actions of polynomial
growth groups. We thank Antoine Gournay for pointing out that Proposition 3.13 fails for
some amenable groups. Finally, the authors thank their advisors, Marcin Sabok and Anush
Tserunyan, for their support and feedback.

2. Preliminaries

Throughout let (X, τ) be a Polish space with Borel probability measure µ, and let Ui be a
countable basis for the open sets in τ . Let X<ω denote the space of finite subsets of X.

Given a graph G, we fix the following notation.

• V (G) is the set of vertices in G.
• E(G) is the set of edges in G.
• For Y ⊆ V (G), E(Y ) denotes the set of edges in the induced subgraph of G.
• ρG : V (G)2 → [0,∞] is the graph metric, where ρG(x, y) =∞ means that x and y

are in different connected components.
• If C ⊂ X:

– Bn(C) ..= {x ∈ X : ρG(x,C) ≤ n}
– ∂nC ..= Bn(C)− C. In particular, we define the (outer) boundary of C to be
∂C ..= ∂1C.

– The boundary visible from infinity, ∂visC, is the subset of ∂C so that each vertex
in ∂visC sees an infinite path avoiding C.

Definition 2.1. If B ⊂ V (G) and n is a natural number, consider two points related if they
are in B and within distance n, and take the generated equivalence relation En. We say C is
an n-component of B if it is an equivalence class of En.

Given a collection T ⊆ X<ω, let T1 ⊂ T denote the family of minimal sets (ordered by
containment), T2 denote the family of minimal sets in T \ T1, etc.

2.1. Connected toasts and one-ended spanning trees.

Here we define connected toasts and show that they can be used to produce one-ended
spanning trees.
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Definition 2.2. Given a Borel graph G on X, we say that a Borel collection T ⊂ X<ω is a
toast if it satisfies

(T1)
⋃
K∈T E(K) = E(G), and

(T2) for every pair K,L ∈ T either B1(K) ∩ L = ∅ or B1(K) ⊆ L, or B1(L) ⊆ K.

If (T2) holds but possibly not (T1), we call T a partial toast. We say a toast is connected
if

(T3) for every K ∈ T the induced subgraph on K \
⋃
K)L∈T L is connected.

We say a toast is layered if

(T4) for each i ≥ 1,
⋃
Ti ⊆

⋃
Ti+1.

We say that G admits a toast a.e. (resp., generically) if there exists a Borel G
invariant conull (resp., comeagre) set X ′ ⊆ X such that there exists a toast for the graph
G|X′ . We define admitting a connected toast, admitting a layered toast, and admitting a
layered connected toast a.e. (resp., generically) analogously.

Proposition 2.3. If G admits a connected toast then it admits a Borel one-ended spanning
tree.

Proof. For each tile K ∈ T we may find a tree that spans K \
⋃
K)L∈T L by (T3). Let T ′ be

the (component finite) spanning forest produced this way. We may extend this by selecting a
vertex vK ∈ ∂K with neighbor u /∈ K and adding edge {u, vK} to T ′ for each K ∈ T . Let T
be the tree produced this way, and note that directing edges in K towards vK witnesses that
T is one-ended. Further, T is component spanning by (T1) and (T2). �

Remark 2.4. In the measurable case the reverse implication also holds, i.e. the existence of
one-ended spanning trees ensures the existence of connected toasts a.e.; see [BKS]. We do
not know if this is the case in the Borel or Baire measurable settings as well.

2.2. Full sets.

Definition 2.5. Call a subset C ⊂ G full if its complement Cc is connected.

Definition 2.6. If a subset C ⊂ V (G) is not full and its complement has exactly one infinite

connected component, we call the filling of C, denoted Ĉ, the union of C and the finite
connected components of Cc or equivalently the complement of the unique infinite connected
component of Cc.

Remark 2.7. For any set C that can be filled,

• Ĉ is full.
• C contains the inner boundary of Ĉ. In particular, if x ∈ Ĉ (resp. Ĉc) and Bn(x) 6⊂ Ĉ

(resp. Ĉc), then Bn(x) ∩ C 6= ∅.

2.3. The Radon–Nikodym cocycle.

We say that a countable Borel equivalence relation E on (X,µ) is µ-preserving (resp. null-
preserving) if for any partial Borel injection γ : X ⇀ X with graph(γ) ⊆ E, µ(dom(γ)) =
µ(im(γ)) (resp. dom(γ) is µ-null if and only if im(γ) is µ-null).

We note that we may always replace µ with ν ..=
∑

m≥1 2−m(γm)∗µ, where (γm)m≥1 is
a sequence of Borel automorphisms such that E =

⋃
m≥1 Graph(γm), which exists by the
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Feldman–Moore theorem [FM77]. Now E is ν-null-preserving, and µ = ν on every E-invariant
set. Thus, without loss of generality, assume that E is null-preserving.

By Section 8 in [KM04], a null-preserving E admits an a.e. unique Radon–Nikodym
cocycle with respect to µ. Being a cocycle for a function (x, y) 7→ wx(y) : E → R+ means
that it satisfies the cocycle identity:

wx(y)wy(z) = wx(z),

for all E-equivalent x, y, z ∈ X. With this in mind, we think of wx(y) as the ‘weight’ of y
relative to x.

We say that w is the Radon–Nikodym cocycle of E with respect to µ if it is Borel (as
a real-valued function on the standard Borel space E) and for any partial Borel injection
γ : X ⇀ X with graph(γ) ⊆ E and f ∈ L1(X,µ),∫

im(γ)

f(x) dµ(x) =

∫
dom(γ)

f(γ(x))wx(γ(x)) dµ(x). (1)

For example, if E is the orbit equivalence relation of a group action Γ y (X,µ) and γ ∈ Γ,
then for all measurable A ⊆ X,

µ(γ · A) =

∫
A

wx(γ(x)) dµ(x). (2)

We will use the following lemma in the proof of Theorem 3.5. Its statement is technical,
but this says that if a set A is sufficiently small and we have a Borel family C satisfying
certain boundedness properties, we may discard sets from C who interfere with A without
losing a set of significant measure.

Lemma 2.8. Let w : EG → R+, (x, y) 7→ wx(y) be the Radon-Nikodym cocycle of EG with
respect to µ. Let A be a Borel set with µ(A) < ε, and C ⊂ X<N, B ..= {BC ⊇ C : C ∈ C}
Borel families such that for some finite B ⊆ G with |B| = k and n ∈ N, for each x ∈ BC ∈ B
and y ∈ BB−1x, BC ⊆ B · xC for some xC ∈ C and wy(x) ≤ n. Then

µ(
⋃
{C : BC ∩ A 6= ∅}) < k2nε.

Proof. We will use the fact that if x, y ∈ BC ∈ B, then by assumption, y = γ · x for some
γ ∈ BB−1. We compute:

µ(
⋃
{C ∈ C : BC ∩ A 6= ∅}) =

∫
1⋃
{C∈C:BC∩A 6=∅}(x) dµ(x)

≤
∫ ∑

y∈BC :x∈C

1⋃
B∩A(y) dµ(x)

=

∫ ∑
y∈BC :x∈C

1⋃
B∩A(y)

wx(y)
wx(y) dµ(x)

[
by Eq. (1)

]
≤

∑
γ∈BB−1

∫
1⋃
B∩A(x)wγ−1(x)(x) dµ(x)

≤ |B|2 · n · µ(A) < k2nε. �
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3. Existence of connected toasts

3.1. Connected toasts generically.

Here we prove that every one-ended bounded degree Borel graph admits a connected toast
generically (which implies Item (i) of Theorem 1.1 by Proposition 2.3).

Definition 3.1. Given a sequence of sets (Ki)i∈ω let K<n =
⋃
i<nKi.

We start with a simple observation:

Lemma 3.2. If T is a toast and S ⊆ T<n is Borel, then T \ S is a toast.

Theorem 3.3. Any locally finite one-ended Borel graph G on X admits a connected toast
generically.

Proof. Such graphs are already known to contain toasts by [BCG+21] Proposition 6.1. Let
T be such a toast. Let (γi)i∈ω be a countable set of Borel involutions that generate EG, and
h : N2 → N a bijection. Recall that we have fixed a countable basis {Ui} for T .

We inductively define Borel partial connected toasts An ⊂ T so that:

(1) γi(
⋃
Ah(i,j)) is non-meagre in Uj.

(2) For each n, A<n satisfies (T3) and (T2).
(3) G \ A<n is one-ended and A<n ⊆ T<m for some m.

To see that we can use this to construct the desired connected toast, note that by property
(1) γi(

⋃
nAn) is comeagre for each i, and thus A =

⋂
i γi(

⋃
nAn) is comeagre as well. Moreover,

this set is G-invariant as
⋃
i γi(x) ⊂ A and is the G component of x for each x ∈ A. From

this and property (2) of the construction we see that {K ∈
⋃
nAn : K ⊂ A} is the desired

connected toast.
Now, let A0 = ∅ and suppose we have found An. Let m be as in property (3) of the

construction and consider T ′ = T \ T<m. This is a toast by Lemma 3.2, and so there exists
some n′ such that γi(T ′<h−1(n′)) is non-meagre in Uj. Notice that for every K ∈ T ′ and

L ∈ A≤n, either (L ∪ ∂(L)) ∩K = ∅ or L ∪ ∂(L) ⊂ K and K \ L is connected by our choice
of m.

Let G′ = G \ A≤n. This graph is one-ended by property (3) of our construction, and so for
every L ∈ T ′<n′ there is an m′ ∈ ω and L ⊂ K ∈ T ′<m′ such that K \ L is G′ connected. Here,
we say L is covered by level m′, and observe that for some m′

γi({x ∈ L ∈ T<n′ : L is covered by level m})
is non-meagre in Uj. Applying the Baire category theorem, we may choose An+1 to be a
single covered tile from every maximal T ′<m′ tile. �

Remark 3.4. We could use a similar algorithm to construct a connected toast (and sub-
sequently a one-ended spanning tree) in any one-ended highly computable graph. This is
outside the scope of the present paper, but it adds to the correspondence between Baire
measurable and highly computable combinatorics recently explored by Qian and Weilacher
in [QW22].

3.2. Connected toasts a.e. in group actions.

In this section our goal is to prove that free Borel actions of one-ended amenable groups
admit connected toasts a.e..
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Theorem 3.5. Let Γ be a finitely generated one-ended amenable group with finite generating
set S, and let G = G(S, a) be the Schreier graph of a free null-preserving action Γ ya X.
Then G admits a layered connected toast a.e..

Our main combinatorial tool is the construction of Følner sequences that witness the
group’s end structure.

Lemma 3.6. Let Γ be a finitely generated one-ended amenable group with finite generating
set S. The Cayley graph of Γ admits a sequence of finite sets Fn ⊂ Bn such that

(1) |Bn−Fn|
|Fn| → 0.

(2) ∂Fn ⊆ Bn − Fn.
(3) Bn − Fn is connected.

Note that properties (1) and (2) of the above are just the usual Følner condition. Also, it
is possible (and from our construction typical) that the sets Fn are not necessarily connected.

Surprisingly, despite Lemma 3.6 being purely group theoretic in nature, our proof of it
relies almost entirely on ideas from descriptive set theory.

Proof of Lemma 3.6. Consider a free pmp action of Γ on a standard probability space (X,µ).
The Schreier graph of this action contains a Borel one-ended spanning tree T a.e. by
[CGMTD]. Since T is one-ended we can orient edges toward the unique infinite end in each
component, and we say u is below v, denoted u < v, if there is a directed path from u to v.
Say that a vertex v ∈ X is of height 0 if it’s a leaf in the tree, and then define height(v) :=
maxu<v{height(u) + 1} (i.e., height 1 if it’s above leaves but not above any other vertices,
etc.). As the tree is a.e. one-ended, a.e. vertex is of finite height. An (<)n− tile is the set of
vertices that are below a given vertex of height (<)n in the tree.

For any given n-tile H there is an m-tile K such that ∂(H) ⊆ K for some m. If this is the
case, we’ll say that H is covered by level m and that K covers H.

Now, for fixed m > n and m-tile K let

good(K) = {v ∈ K : v ∈ H is a < n-tile and K covers H}.

We will say that K is (ε, n)-good if |K\good(K)|
|K| < ε. Notice that any (ε, n)-good tile satisfies

the conditions of Lemma 3.6, since an m-tile minus a < n-tile is connected whenever n < m.
Therefore, it suffices to show that (ε, n)-good tiles exist for some n. In order to do this, we’ll
actually show that such tiles almost cover all of the graph.

Claim 3.7. For any ε, ε′ > 0 there are n < m ∈ N such that 1−ε′ of G′ is tiled by (ε, n)-good
m-tiles.

Proof. First note that for any ε2 > 0 there is a choice of n < m such that 1 − ε2 of G is
contained in < n-tiles that are covered by level m. Call such an < n-tile good. Fix such an ε2.
Suppose that 1−ε1 of the graph is tiled by ε-goodm tiles. Then at least 1−ε2−(1−ε1) = ε1−ε2

of the graph is tiled by good < n-tiles that are not contained in ε-good m tiles. Let S be
the set of all such m-tiles. Then we know that µ(

⋃
K∈S good(K)) ≥ ε1 − ε2. Moreover, by

definition we know that for any m-tile K ∈ S that |K \ good(K)| ≥ ε|K| ≥ ε| good(K)|.
So, using the previous two observations and the fact that the action is pmp we see that
µ(S) ≥ ε(ε1 − ε2) + ε1 − ε2. Consequently, we know

1− ε1 + (1 + ε)(ε1 − ε2) ≤ 1,
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and thus

ε1 ≤
ε2(1 + ε)

ε
.

Therefore, we can choose n and m large enough to make ε2 small enough to ensure that
ε1 < ε′, as desired. �

�

Definition 3.8. Let Y ⊆ X be Borel. We define the connected isoperimetric constant
of G restricted to Y to be

Φc
Y (G) ..= inf

F

{
µ(
⋃
F∈F(BF − F ) ∩ Y )

µ(
⋃
F∈F F ∩ Y )

}
,

Where F ⊆ Y <∞ is a Borel family with µ(
⋃
F) > 0 and associated finite sets F ⊂ BF ⊂ X

such that for each F ∈ F ,

(1) ∂vis(F ) ⊆ BF − F , where ∂vis is with respect to G and not G|Y.
(2) BF − F is connected (as an induced subgraph of G).
(3) BF ∩ F ′ = ∅ for every F 6= F ′ ∈ F .
(4) If C ⊆ G \

⋃
F∈F F is a finite induced component, then C ⊆

⋃
F∈F BF .

Remark 3.9. When Y = X, G is one-ended, and F is a family satisfying the above conditions,
then the induced subgraph on X \

⋃
F is a union of one-ended and finite components. Namely,

any G path with endpoints in G\
⋃
F passing through some F ∈ F may be rerouted through

BF .

The following Lemma will be needed for a measure exhaustion later.

Lemma 3.10. Let F witness that Φc
X(G) < ε and Y = X \

⋃
F∈F BF . If F ′ witnesses that

Φc
Y (G) < ε′, then F ∪ F ′ witnesses that Φc

X(G) < ε+ ε′.

Proof. The only potential problem is that BF ′ ∩F 6= ∅ for some F ′ ∈ F ′ and F ∈ F . However,
this can be overcome by replacing BF ′ with (BF ′ − F̂ ) ∪BF . To see that this is connected,
note that property (4) of the definition and the fact that F ′ ⊂ Y ensures that any G path
starting in F ′ intersecting F must first pass through ∂visF ⊆ BF . In particular, any such path
with endpoints in ∂visF

′ can be rerouted through BF , witnessing that this set is connected.
Since BF ′ is finite, it can only intersect finitely many sets F ∈ F , and so iterating this for
each such F ′ gives the desired BF ′ . �

Remark 3.11. In the previous definition and lemma it is possible that some sets are nesting,
i.e. there may be sets F, F ′ ∈ F so that any infinite walk starting from ∂F must pass through
F ′. In such a situation it must also be the case that BF is in a finite component C of G−F ′,
and in particular C − F̂ is connected, where F̂ is the filling of F as in Definition 2.6. Namely,
C and F̂ satisfy property 3 of being a connected toast.

Our next proposition is similar to the main Lemma from Marks’ proof of the Connes-
Feldman-Weiss theorem [Mar17], with the objects from Lemma 3.6 taking the place of
arbitrary Følner sequences.

Proposition 3.12. For G as above and any positively measured Borel H ⊆ X, Φc
H(G|H) = 0.
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Bi

Fi

Figure 1. from Ck to Tk: we only discard a set of measure 1
2k+1 by Lemma 2.8

Proof. Let (Fn)n∈ω be a Følner sequence as in Proposition Lemma 3.6, and n be large enough
so that |Bn − Fn| < ε|Fn|. Then we see that∫

H

|(Bn − Fn)−1x|dµ(x) <

∫
H

ε|F−1
n x|dµ(x),

(where |(Bn − Fn)−1x| and |F−1
n x| are calculated with respect to G and not to H). Since the

sets Bn and Fn are finite and bounded, we can find a finite Borel coloring c of G so that x
and y get different colors if Bnx ∩Bny 6= ∅. Since every element of G is colored, we see that

∑
k

∫
H

|{z ∈ (Bn − Fn)−1x : c(z) = k}|dµ(x) < ε
∑
k

∫
H

|{z ∈ F−1
n x : c(z) = k}|dµ(x).

There is some k that still satisfies this inequality, i.e.∫
H

|{z ∈ (Bn − Fn)−1x : c(z) = k}|dµ(x) < ε

∫
H

|{z ∈ F−1
n x : c(z) = k}|dµ(x).

Notice that |{z ∈ F−1
n x : c(z) = k}| is 1 if x ∈ Fnz for some z with c(z) = k and 0

otherwise by our choice of coloring. This means the right hand side of the above equation is
just µ(

⋃
z:c(z)=k Fnz ∩H). Similarly, |{z ∈ (Bn − Fn)−1x : c(z) = k}| is 1 if x ∈ (Bn − Fn)z

for some z with c(z) = k and 0 otherwise, so the left hand side of the equation is just
µ(
⋃
z:c(z)=k(Bn − Fn)z ∩H). Items (2) and (3) of Lemma 3.6 ensure that the tiles Fnz for z

with c(z) = k are as in Items (1) and (2) of Definition 3.8. �

We now use Proposition 3.12 and Lemma 2.8 to prove Theorem 3.5. This proof is similar
to the equivalence of hyperfiniteness and isoperimetric constant on any subset being equal to
zero due to Kaimanovich in [Kai97]. We use the connected isoperimetric constant to ensure
that our toast is connected.

Proof of Theorem 3.5. By a standard measure exhaustion argument and Lemma 3.10, for
any ε > 0, we can find a maximal countable collection Aε = {An} of positively measured
Borel subsets of X such that:

(1) Each An is of the form
⋃
Fn, where Fn is a set witnessing that Φc

X(G) < ε as in
Definition 3.8.

(2) For An 6= Am ∈ Aε, if Fn ∈ Fn and Fm ∈ Fm, then BFn ∩ Fm = ∅.



ONE-ENDED SPANNING TREES AND DEFINABLE COMBINATORICS 11

Given such an Aε let Bε =
⋃
n

⋃
F∈FnBF , where BF is as in Definition 3.8. Notice that

µ(
⋃
B) = 1; if not, then we could apply Proposition 3.12 to X −

⋃
Bε to find another

disjoint Borel set Aω as above, contradicting the maximality of Aε. In particular, we have
µ(
⋃
Aε) = 1− µ(

⋃
(Bε −Aε)) > 1− ε.

We will use this fact to inductively build the connected toast as follows. First, fix such an
A 1

8
. We may refine A 1

8
to a subset C0 so that properties (1)-(4) of Definition 3.8 still hold,

µ(C0) >
1
4
, and there is a finite B0 ⊆ G (|B0| = k0) and l0 ∈ N such that for each C ∈ C0,

BC ⊆ B0 · xC for some xC ∈ C, and wy(x) ≤ l0 for each x ∈ BC and y ∈ B0B
−1
0 x.

Now assume we have constructed Cn ⊆ Aε′ so that properties (1)-(4) of Definition 3.8
still hold, µ(Cn) > 1 − 1

2n+2 , and so that for B ∈ B′ε we have B ⊆ Bn · x′, |Bn| = kn, and
maxx,y∈B wy(x) < ln for some kn, ln ∈ N.

Let ε < 1
2n+2·k2

n·ln
. Then by the above argument, we can find an Aε. Let Tn ..= Cn \⋃

{C ∈ Cn : BC ∩ Acε 6= ∅} (see Fig. 1). Since µ(Aε) < ε, by Lemma 2.8,

µ(Tk) > 1− 1

2k+1
.

Then T ..=
⋃
k∈N Tk is a layered connected toast a.e.. Indeed, (T1) follows from the fact that

elements of Tn are induced components and µ(
⋃
Tn)→ 1. (T2) follows from construction of

the Aε and the fact that we discard sets in Cn whose connected boundaries interfere with
Ccn+1. (T3) follows from the fact that BF − F is connected for each element of a Cn Finally,
(T4) follows from the construction, since we throw away sets in Ck who lie in the complement
of
⋃
Ck+1. �

3.3. Connected toasts and polynomial growth groups.

We start with a proposition establishing a uniform constant for the boundary of connected
sets with connected complement in one-ended groups.

Proposition 3.13. Let Γ be a one-ended, finitely presented group with finite generating set
S and consider the Cayley graph metric on Γ induced by S. There is a constant κΓ such that
if C ⊂ Γ is a connected subset of Γ with Cc connected, ∂κΓ

C is connected.

A proof of this result for balls can be found in [Gou14] for spheres, but as noted (in
[Gou14]) the construction works for all sets satisfying the hypothesis. See also [BG16]. We
give a sketch of the proof for a slightly stronger result, Lemma 3.14.

Lemma 3.14. Let Γ be a one-ended, finitely presented group with finite generating set S
and consider the Cayley graph metric on Γ induced by S. There is a constant κΓ such that if
C ⊂ Γ is a full subset of Γ with BκΓ

(C) connected, then ∂κΓ
C is connected.

Remark 3.15. The constant κΓ in Lemma 3.14 can be taken to be the same as in Proposition
3.13.

Sketch of proof. The proof is almost the same as of Proposition 3.13 in [Gou14]. Take two
points in ∂κΓ

(V ). Take one path avoiding V , say p1 and one path within BκΓ
(V ), say

p2. This determines a loop, namely p1p
−1
2 , in the Cayley complex of Γ, which is simply

connected. Thus, one can fill this loop by the image of a disc which can be decomposed into
2-cells corresponding to generating relations, of which there are only finitely many of. This
decomposition is commonly referred to as a van Kampen diagram, which we denote D. It
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(a) Possibility for the van Kampen diagram to
not be homeomorphic to a disc.

(b) Removing the striked region will cause a dis-
connect in the van Kampen diagram.

Figure 2. Two possible case pictured for proof generality in the proof of
Lemma 3.14.

will not always be homeomorphic to a disc, since there might be some degeneracies, in the
form of flattening part of the disc to a line or point. This is pictured on the left in Figure 2.

V

BκΓ
(V )

p1

p2

Figure 3. Example of a van Kampen diagram, without the possible generali-
ties of Figure 2. The bold line is the constructed path, after removing every
cell intersecting BκΓ

(V )c, as per the procedure described in Lemma 3.14.

Such 2-cells can have vertices on the outside of BκΓ
(V ). Pick such a 2-cell which intersect

the boundary in p1 and remove the cell and its intersection with the boundary of D. If there
does not exists such a 2-cell, p1 is already a path in ∂κΓ

(V ).
Upon removal, the boundary changes and p1 changes to be a new path p′. More precisely,

the new boundary of D is of the form p′p−1
2 for some path p′. It is possible that removing a

2-cell disconnects the disc, as seen on the right in Figure 2. In which case, p2 is still part of
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the boundary of exactly one connected component, which is the one on which the argument
should be continued.

Note that by taking κΓ to be bigger than half of the longest generating relations, we ensure
that a given 2-cell, which corresponds to a generating relation, cannot have both vertices
outside of BκΓ

(V ) and vertices within V . In particular, the new path p′ cannot intersect V .
The remaining path after removing all 2-cells with vertices in BκΓ

(V )c can never fall within
V either, since for this to happen, a 2-cell with vertices in V would have had to be removed.
See Figure 3.

We thus end with a path between the two points which lies in ∂κΓ
(V ). Since the points

were arbitrary, ∂κΓ
(V ) must be connected, as required. �

Theorem 3.16. Let Γ be a one-ended polynomial growth group with finite generating set S,
and let G = G(S, a) be the Schreier graph of a free Borel action Γ ya X. Then G admits a
connected toast (everywhere).

Proof. Since Γ is of polynomial growth, it must be finitely presented. Let κΓ be the constant
given by Proposition 3.13, which is also sufficient for Lemma 3.14.

By [CJM+20], this action has finite Borel asymptotic dimension, hence by the proof of
Theorem 4.8 a), for r >> κΓ, there exists a sequence of sets Vn ⊂ X such that:

(P1) The 3r-components of Vn are uniformly bounded by some constant cn, in the sense
that they are of diameter < cn. This also yields a uniform bound on their cardinality.

(P2) For every x ∈ X, there is n such that Br(x) ⊂ Vn.
(P3) If n < m and x ∈ Vn, either B4r(x) ⊂ Vm or B4r(x) ∩ Vm = ∅.

Uniform boundedness in (P1) is not direct. It follows from the fact that these sets are
constructed using [CJM+20] Corollary 4.6, which gives a finite cover Un = {Un

0 , ..., U
n
d } where

every Un
i has uniformly bounded 3r-components. The sequence Vn is built locally the same

as a member of the cover, in the sense that for any x, there is some i such that

Vn|[x] = Un
i |[x].

Thus, the 3r-components of Vn are uniformly bounded by some cn.
As noted in [CJM+20], these are similar to toasts, but lack some properties. We modify

them to be toasts by considering the sequence Wn := V̂n.
To see why this is well-defined, we just need to justify why Vn can be filled. Consider

that the 3r-components are far apart from each other, with respect to κΓ, filling Vn will be
equivalent to filling every 3r-component separately. The only problem that might happen is
if two 3r-components C1, C2 are nested in the sense that C1 is strictly contained in a finite
connected component of Cc

2. Since every component is isomorphic to the Cayley graph and
the 3r-components have bounded diameter, there can be no infinitely nested sequence of
3r-components and so we can restrain ourselves to looking at 3r-components which are nested
in no other 3r-components.

We now prove (T1) to (T3) for the collection T ⊂ X<ω of connected components (with
respect to the Schreier graph) of the sequence Wn, which are finite because the 3r-components
are bounded. More precisely, since 3r-components of Wn are fillings of 3r-components of Vn
and these are bounded in diameter by some constant cn, the corresponding 3r-components of
Wn will still be bounded in diameter by cn. By (P2), any edge of G is eventually in E(Vn),
hence in E(Wn) and

⋃
L∈T E(L).

� (T1)
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To prove (T2), suppose we have L1 6= L2 ∈ T with Li a connected component of Wni
.

If n1 = n2, then L1 and L2 are different connected components of the same set, hence
B1(L1) ∩ L2 = ∅. When n1 < n2, it suffices to show one of

(1) Br(L1) ∩ L2 = ∅
(2) Br(L2) ⊂ L1

(3) Br(L1) ⊂ L2.

Note that we are considering the ball of radius r, not just one. Considering that both
∂r(Li) are finite and connected, if they are disjoint, either ∂r(L1) ⊂ L2, which implies (3),
or ∂r(L1) ⊂ Br(L2)

c. By symmetry, let us consider the case where ∂r(L1) ⊂ Br(L2)
c and

∂r(L2) ⊂ Br(L1)c. In this case, (1) is true.
Consider now the case where the ∂r(Li) are not disjoint. Let y ∈ ∂r(L1) ∩ ∂r(L2) and by

Remark 2.7, we can find two points xi ∈ Li ∩ Vni
which are r-close to y. In this case, by (P3),

B4r(x1) ⊂ Vn2 and by connectedness, B4r(x1) ⊂ L2. In particular, y ∈ L2, contradicting the
hypothesis that y ∈ ∂r(L2). � (T2)

To prove (T3), note that we’ve shown something stronger than (T2). We’ve shown that if
L1, L2 ∈ T and L1 ⊂ L2, we have that ∂κΓ

(L1) ⊂ L2. Furthermore, ∂κΓ
(L1) is either disjoint

of any other L3 ∈ T with L3 ⊂ L2, or such L3 is a connected component of the same Wn

that L1 is.
Taking all such L3 repeatedly, we get a subset of Wn whose κΓ-ball is connected and

contained in L2 without touching any other components. The κΓ-boundary is connected by
the Lemma 3.14. � (T3)

Hence, the connected components of the sequence Wn is a connected toast, as desired. �

4. Combinatorial applications

In this section we use the connected toasts constructed in the previous sections to help
produce measurable and Baire measurable matchings in regular bipartite graphs and Borel
balanced orientations in even degree graphs.

4.1. Borel orientations.

In this section we prove Theorem 1.3. The same result was already proven for pmp graphs
in [BKS] as an application of the results on measurable perfect matchings in that paper.
Unlike in the measure case, in the Borel setting it is no longer known if the existence of
connected toasts ensures the existence of Borel matchings even in d-regular bipartite graphs.
Instead of using the seemingly more complicated matching results, we give a more direct
proof that even degree graphs with connected toasts admit Borel balanced orientations.

We use the following simple fact, whose proof can be found in [BKS] Lemma 2.4.

Lemma 4.1. Let G be a finite, connected graph and P ⊆ V (G) a subset of even size. Then
there exists a spanning subgraph H of G such that every vertex of P has odd degree in H,
and every vertex of V (G) \ P has even degree in H.

Theorem 4.2. Let G be a locally finite Borel graph that admits a Borel connected toast. If
each vertex of G has even degree then G admits a Borel balanced orientation.
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Proof. Let T be a Borel connected toast. We inductively build a sequence of even degree
one-ended Borel graphs G = G0 ⊃ G1 ⊃ G2... such that E(Gn) \ E(Tn) = E(Gn+1) \ E(Tn)
as follows:

Suppose we have defined Gn. We claim that for every edge e ∈ K ∈ T≤n ∩Gn there is a
cycle C ⊆ L ∈ Tn+1 in Gn with e ∈ C. To see this, since Gn has only even degree vertices
each edge is either in an isolated component (in which case it contains an Euler tour covering
this edge) or else has paths from both of its endpoints to L \ V (T≤n), which is connected
by definition. Applying Lemma 4.1 to this set and P the endpoints of the paths gives a
Borel family of edge disjoint cycles Cn such that E(Cn+1) ⊆ E(Tn+1), and for every minimal
K ∈ T≤n with E(K)∩Gn 6= ∅ there is a C ∈ Cn+1 with C ∩K 6= ∅. Let Gn+1 = Gn \E(Cn+1).

For each cycle C ∈
⋃
n Cn orient its edges cyclically. Then each vertex has outdegree equal

to indegree in this partial orientation. Repeating this for each level of the toast, every edge
is oriented as at least one edge in a toast piece K is oriented for every piece L with K ⊂ L,
so this gives the desired balanced orientation. �

4.2. Perfect matchings generically.

Here we show that every bipartite one-ended d-regular Borel graph admits a Borel perfect
matching generically. In the pmp setting the analogous theorem was established in [BKS] by
first finding acyclic fractional perfect matchings and then using the existence of connected
toasts a.e. to randomly perturb these matchings, resulting in a new fractional perfect matching
with a smaller number of unmatched points. Since perturbation arguments of this type
fundamentally rely on measure, a different approach must be used. However, the strong
pigeonhole principle given to us by the Baire category theorem allows us to immediately
construct a perfect matching from a connected toast, bypassing the reduction to the acyclic
case in previous arguments and greatly simplifying the proof.

Before beginning, recall that a fractional perfect matching is a function σ : E(G)→
[0, 1] such that

∑
e:v∈e σ(e) = 1 for every v ∈ V (G).

Remark 4.3. Given a cycle C ⊂ E(G) with distinguished edge e′ and fractional perfect
matching f with ε ≤ f(e) ≤ 1−ε for all edges e ∈ C, we may apply an alternating ε-circuit
to obtain a new fractional matching f ′, where f ′(e) = f(e) + ε if e ∈ C is of even distance to
e′, f ′(e) = f(e)− ε if e is of odd distance, and f ′(e) = f(e) otherwise.

Theorem 4.4. Let G be a d-regular bipartite one-ended Borel graph. Then G admits a Borel
perfect matching generically.

Proof of Theorem 4.4. Let T be a connected toast. Let σ0 be the (constant) fractional perfect
matching that is equal to 1

d
on all edges. We inductively define a sequence of Borel fractional

perfect matchings σi, naturals ki ∈ N, and Borel families Si such that:

(1) σi(e) ∈ { jd : j ∈ {0, ..., d}} for all edges.
(2) σi(e) ∈ {0, 1} for all e ∈ E(Si ∪ ∂(Si)), and V (Si) is non-meagre in Ui.
(3) σi(e) = 1

d
for all e ∈ E(G) \ E(Tki).

(4) If σi(e) ∈ {0, 1} then σi+1(e) = σi(e).
(5) G \ S<i is one-ended, and there exists a j with S<i ⊆ T<j.

Given such a sequence, we claim that M =
⋃
i σ
−1
i {1} is the desired perfect matching. To

see this, note that any vertex is adjacent to at most one edge in M by property (4) of the
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Figure 4. Towards a perfect matching: given a non-integral edge e ∈ C1 we
find a (necessarily even) cycle in C2 and apply a 1

d
circuit. Iterating this up to

d− 1 many times, we can ensure σ(e) = 1.

construction, and that generically many vertices are adjacent to an edge in M by properties
(2) and (4).

Now, suppose that we have constructed σi−1, ki−1, and Si−1 with the desired properties.

Claim 4.5. Let C1 ∈ T1, |E(C1)| = k, and let C2, ..., Cdk ∈ T with Cj ( Cj+1 for each j < k.
Then there is a fractional perfect matching σ such that

(1) σ agrees with σi−1 outside of Ck.
(2) σ(e) ∈ {0, 1} for each e ∈ E(C1).
(3) If σi−1(e) ∈ {0, 1}, then σ(e) = σi−1(e).

Proof. First, note that by Remark 4.3, we may assume without loss of generality that there
are no cycles within C1.

We define σ recursively. Once σ(e) is integral, remove e from our graph. Note that if we
remain a fractional perfect matching at each step, then our graph will never have any leaves.

Pick any remaining (non integral) edge e ∈ C1, and consider walks along edges leaving
both endpoints of e. Since C1 has no cycles and since we have no leaves, these walks enter
C2 \ C1. By connectivity of C2 \ C1, these walks may be joined to form a cycle in C2. Apply
a 1

d
-circuit to this cycle. Note that this may disconnect C2 \ C1, but C3 \ C2 will still be

connected. See Fig. 4 for a partially drawn example with e shown in blue, d = 3, and all
edges e′ starting with σi−1(e′) = 1

3
.

Iterate this process, considering walks entering C3 \C2, ..., Cd \Cd−1. In doing this, we can
ensure that σ(e) becomes integral, and repeating this at most k times ensures that all edges
in C1 become integral. �

With this claim in mind, use property (5) of the construction to find a connected toast
T ′ ⊆ T ∩ (G \ S<i) such that T ′1 is non-meagre in Ui. As every element of T ′1 is finite, we
know that there exists a ti such that {v ∈ C ∈ T ′1 : |C| ≤ ti} is non-meagre in Ui. Let
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ki > dti be large enough such that T ′i = {C ∈ Ti : C ⊂ D1 ⊂ ... ⊂ Dki where each Dj ∈ Tki}
is non-meagre in Ui. Each element of Tki contains only finitely many elements of T ′1 , so we
may find a Borel ω-coloring of elements of T ′1 so that no two elements in the same Tki tile
receive the same color. Let Si be the collection of elements in a color class whose induced
vertex set is non-meagre in Ui.

We round edges in E(Si) as follows: for each C ∈ Si, fix C ( D1 ( ... ( Dki , and obtain a
fractional perfect matching satisfying the conclusion of Claim 4.5. Since no two elements
of Tki received the same color, these applications of Claim 4.5 do not interfere with each
other. �

Remark 4.6. As in Remark 3.4, we could use a similar algorithm to construct a perfect
matching in any one-ended, bipartite, d-regular highly computable graph. This is outside the
scope of the present paper, but does further the link between Baire measurable and highly
computable combinatorics recently explored by Qian and Weilacher in [QW22].

4.3. Perfect matchings a.e.

In this section we briefly sketch the following facts:

Theorem 4.7. Let G be a d-regular bipartite Borel graph that admits a connected toast. Then
G admits a Borel perfect matching a.e.

Corollary 4.8. Let Γ be a one-ended amenable group with generating set S such that the
Cayley graph on Γ induced by S is bipartite, and let G = G(S, a) be the Schreier graph of a
free Borel action Γ ya X. Then G admits a Borel perfect matching a.e.

This follows essentially from Theorem 3.5 and the arguments in [BKS], where the same
theorem was proven for pmp graphs. Other than to show the existence of connected toasts,
the only place that the pmp assumption was used in Theorem 6.4 of [BKS] (the pmp version
of the result we sketch here) was in order to ensure that extreme points in the space of
measurable fractional perfect matchings are integral besides on a union of bi-infinite lines.
This is not necessarily true for non-pmp graphs, but we can circumvent this issue with the
following lemma.

Lemma 4.9. Let σ be a measurable fractional perfect matching such that σ−1(0, 1) is a.e.
acyclic. Then there is a measurable fractional perfect matching σ′ so that σ′−1(0, 1) ⊆ σ−1(0, 1)
and σ′ is integral besides on a union of bi-infinite lines.

Proof. Since the subgraph induced by σ−1(0, 1) has no degree 1 vertices and is hyperfinite, we
may apply [CM17] Theorem A to find a measurable matching M of this graph which covers
all but a union of bi-infinite lines B. Letting σ′(e) = σ(e) for all e /∈ σ−1(0, 1), σ′(e) = 1 for
all e ∈M, σ′(e) = 1

2
for e ∈ B, and σ′(e) = 0 otherwise is as desired. �
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[Tim21a] Ádám Timár, A factor matching of optimal tail between Poisson processes, preprint,
arXiv:2106.04524.
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